题意: 给出一个9*9的矩阵,有一些格子已经填了数,有一些是.代表未填。求任意一组解使得每行包含1~9,每列包含1~9,每个小矩形(3*3)包含1~9。
解析: 精确覆盖DLX的经典题目,每一行代表要填数的情况,列共有81*4行,第一个81行代表第i行j列放了数,第二个81列代表第i行放的数k,第三个81列
代表第j列放的数k,第四个81行代表第i个小矩形放的数k。对于字符为.的情况添加9行,对于字符为数字的情况添加一行。然后就是跑一遍DLX,保存一下答案
输出即可。
代码
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int INF=1e9+;
const int ms=*;
const int maxn=ms*;
int ans[maxn];
struct DLX
{
int n,id;
int L[maxn],R[maxn],U[maxn],D[maxn];
int C[maxn],S[maxn],loc[maxn][];
int H[ms];
void init(int nn=)
{
n=nn;
for(int i=;i<=n;i++) U[i]=D[i]=i,L[i]=i-,R[i]=i+;
L[]=n; R[n]=;
id=n;
memset(S,,sizeof(S));
memset(H,-,sizeof(H));
}
void Link(int x,int y,int px,int py,int k)
{
++id;
D[id]=y; U[id]=U[y];
D[U[y]]=id; U[y]=id;
loc[id][]=px,loc[id][]=py,loc[id][]=k;
C[id]=y; S[y]++;
if(H[x]==-) H[x]=L[id]=R[id]=id;
else
{
int a=H[x];
int b=R[a];
L[id]=a; R[a]=id;
R[id]=b; L[b]=id;
H[x]=id;
}
}
void Remove(int c)
{
L[R[c]]=L[c];
R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
S[C[j]]--;
}
}
void Resume(int c)
{
for(int i=U[c];i!=c;i=U[i])
for(int j=R[i];j!=i;j=R[j])
{
S[C[j]]++;
U[D[j]]=j;
D[U[j]]=j;
}
L[R[c]]=c;
R[L[c]]=c;
}
bool dfs(int step)
{
if(step==) return true;
if(R[]==) return false;
int Min=INF,c=-;
for(int i=R[];i;i=R[i])
if(Min>S[i]){ Min=S[i]; c=i; }
Remove(c);
for(int i=D[c];i!=c;i=D[i])
{
ans[step]=i;
for(int j=R[i];j!=i;j=R[j]) Remove(C[j]);
if(dfs(step+)) return true;
for(int j=L[i];j!=i;j=L[j]) Resume(C[j]);
}
Resume(c);
return false;
}
}dlx;
int main()
{
char S[];
while(scanf("%s",S)!=EOF)
{
if(S[]=='e') break;
dlx.init(*);
int k=,r=;
for(int x=;x<;x++)
for(int y=;y<;y++)
{
char ch=S[k++];
int a,b,c,d;
if(ch=='.')
{
for(int i=;i<=;i++)
{
a=x*+y+;
b=x*+i+;
c=y*+i++;
int s=(x/)*+y/;
d=s*+i+++;
++r;
dlx.Link(r,a,x,y,i);
dlx.Link(r,b,x,y,i);
dlx.Link(r,c,x,y,i);
dlx.Link(r,d,x,y,i);
}
}
else
{
int i=ch-'';
a=x*+y+;
b=x*+i+;
c=y*+i++;
int s=(x/)*+y/;
d=s*+i+++;
++r;
dlx.Link(r,a,x,y,i);
dlx.Link(r,b,x,y,i);
dlx.Link(r,c,x,y,i);
dlx.Link(r,d,x,y,i);
}
}
dlx.dfs();
int res[][];
for(int i=;i<;i++)
{
int a=ans[i];
int x=dlx.loc[a][],y=dlx.loc[a][],k=dlx.loc[a][];
res[x][y]=k;
}
for(int i=;i<;i++)
for(int j=;j<;j++) printf("%d",res[i][j]);
printf("\n");
}
return ;
}