模型编译:
#encoding:utf-8
import onnx
import numpy as np
import tvm
import tvm.relay as relay
import os
from tvm.contrib import ndk
onnx_model = onnx.load('mobilenet_v3_small.onnx')
x = np.ones([1,3,224,224])
input_name = 'input1'
shape_dict = {input_name: x.shape}
sym, params = relay.frontend.from_onnx(onnx_model, shape_dict)
target = "opencl -device=adreno"
target_host = "llvm -mtriple=arm64-linux-android"
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(sym, target=target, target_host=target_host, params=params)
lib.export_library("deploy.so", cc="/path_to_ndk/26.0.10792818/toolchains/llvm/prebuilt/linux-x86_64/bin/aarch64-linux-android34-clang++")
graph_json_path = "deploy.json"
with open(graph_json_path, 'w') as fo:
fo.write(graph)
param_path = "deploy.params"
with open(param_path, 'wb') as fo:
fo.write(relay.save_param_dict(params))
--------------------------------------------------------------------------------------------------------------------------
c++代码:
#include <dlpack/dlpack.h>
#include <tvm/runtime/module.h>
#include <tvm/runtime/registry.h>
#include <tvm/runtime/packed_func.h>
#include <fstream>
#include <iterator>
#include <algorithm>
#include <chrono>
int main()
{
// tvm module for compiled functions
tvm::runtime::Module mod_syslib = tvm::runtime::Module::LoadFromFile("deploy.so");
// json graph
std::ifstream json_in("deploy.json", std::ios::in);
std::string json_data((std::istreambuf_iterator<char>(json_in)), std::istreambuf_iterator<char>());
json_in.close();
// parameters in binary
std::ifstream params_in("deploy.params", std::ios::binary);
std::string params_data((std::istreambuf_iterator<char>(params_in)), std::istreambuf_iterator<char>());
params_in.close();
// parameters need to be TVMByteArray type to indicate the binary data
TVMByteArray params_arr;
params_arr.data = params_data.c_str();
params_arr.size = params_data.length();
int dtype_code = kDLFloat;
int dtype_bits = 32;
int dtype_lanes = 1;
int device_type = kDLOpenCL;
int device_id = 0;
// get global function module for graph runtime
tvm::runtime::Module mod = (*tvm::runtime::Registry::Get("tvm.graph_executor.create"))(json_data, mod_syslib, device_type, device_id);
DLTensor* x;
int in_ndim = 4;
int64_t in_shape[4] = {1, 3, 224, 224};
TVMArrayAlloc(in_shape, in_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &x);
// load image data saved in binary
std::ifstream data_fin("cat.bin", std::ios::binary);
if(data_fin.is_open()){
;
}else{
std::cout << "@@@@@@@@ Failed to open cat.bin!!!" << std::endl;
}
float img[3*224*224] = {0.0f};
// data_fin.read(static_cast<char*>(x->data), 3 * 224 * 224 * 4);
data_fin.read((char*)img, 3 * 224 * 224 * sizeof(float));
TVMArrayCopyFromBytes(x, img, 3 * 224 * 224 * sizeof(float));
// get the function from the module(set input data)
tvm::runtime::PackedFunc set_input = mod.GetFunction("set_input");
set_input("input", x);
// get the function from the module(load patameters)
tvm::runtime::PackedFunc load_params = mod.GetFunction("load_params");
load_params(params_arr);
// get the function from the module(run it)
tvm::runtime::PackedFunc run = mod.GetFunction("run");
run();
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
const uint_t loops = 10000;
for(uint_t i = 0; i < loops; i++){
run();
}
std::chrono::steady_clock::time_point end_time = std::chrono::steady_clock::now();
auto elapsed = end_time - start_time;
long long elapsed_time = std::chrono::duration_cast<std::chrono::milliseconds>(elapsed).count();
std::cout << "elapsed time in ount: " << elapsed_time << std::endl;
std::cout << "inference time per image: " << double(elapsed_time) / double(loops) << std::endl;
DLTensor* y;
int out_ndim = 2;
int64_t out_shape[2] = {1, 1001};
TVMArrayAlloc(out_shape, out_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &y);
// get the function from the module(get output data)
tvm::runtime::PackedFunc get_output = mod.GetFunction("get_output");
get_output(0, y);
// get the maximum position in output vector
// auto y_iter = static_cast<float*>(y->data);
float y_iter[1001] = {0};
TVMArrayCopyToBytes(y, y_iter, 1001*sizeof(float));
auto max_iter = std::max_element(y_iter, y_iter + 1001);
auto max_index = std::distance(y_iter, max_iter);
std::cout << "The maximum position in output vector is: " << max_index << std::endl;
TVMArrayFree(x);
TVMArrayFree(y);
return 0;
}
其他的请参考:tvm交叉编译示例——android cpu-****博客