Codevs_1017_乘积最大_(划分型动态规划/记忆化搜索)

时间:2023-06-09 11:20:26

描述


http://codevs.cn/problem/1017/

给出一个n位数,在数字中间添加k个乘号,使得最终的乘积最大.

1017 乘积最大

2000年NOIP全国联赛普及组NOIP全国联赛提高组

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold
题目描述 Description

今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:

设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大。

同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:

有一个数字串:312, 当N=3,K=1时会有以下两种分法:

1)  3*12=36

2)  31*2=62

这时,符合题目要求的结果是:31*2=62

现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。

输入描述 Input Description

   程序的输入共有两行:

第一行共有2个自然数N,K(6≤N≤40,1≤K≤6)

第二行是一个长度为N的数字串。

输出描述 Output Description

结果显示在屏幕上,相对于输入,应输出所求得的最大乘积(一个自然数)。

样例输入 Sample Input

4  2

1231

样例输出 Sample Output

62

数据范围及提示 Data Size & Hint

本题由于比较老,数据实际也比较小,用long long 即可通过

分析


问题的关键就在于能不能看出来怎么划分.问题可以看作是在前n个数中使用k个乘号求最优解.那么前n个数中使用k个乘号是通过在前j(j<n)个数中使用k-1个乘号,其结果再乘上[j+1,n]表示的数字.如果用dp[i][k]表示在前i个数字中使用k个乘号所得到的最优解,那么dp[i][k]=max{dp[j][k-1]*[j+1,i]}(j<i).这里需要预处理出来A数组,其中A[i][j]表示[i,j]所表示的数字.

注意:

1.dp[i][k]从dp[j][k-1]来,所以要利用k-1的状态,所以k的循环应该在外层.

2.使用k个乘号,至少是前k+1个数字.

动态规划

 #include <bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn=,maxk=;
int n,K;
char str[maxn];
ll A[maxn][maxn],dp[maxn][maxk]; void solve(){
for(int i=;i<=n;i++) dp[i][]=A[][i];
for(int k=;k<=K;k++)
for(int i=k+;i<=n;i++)
for(int j=k;j<i;j++)
dp[i][k]=max(dp[i][k],dp[j][k-]*A[j+][i]);
printf("%lld\n",dp[n][K]);
}
void init(){
scanf("%d%d%s",&n,&K,str+);
for(int i=;i<=n;i++){
A[i][i]=str[i]-'';
for(int j=i+;j<=n;j++)
A[i][j]=A[i][j-]*+(str[j]-'');
}
}
int main(){
init();
solve();
return ;
}

记忆化搜索

 #include <bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn=,maxk=;
int n,K;
char str[maxn];
ll A[maxn][maxn],dp[maxn][maxk]; ll dfs(int m,int k){
if(dp[m][k]) return dp[m][k];
if(k==) return dp[m][k]=A[][m];
for(int i=k;i<m;i++)
dp[m][k]=max(dp[m][k],dfs(i,k-)*A[i+][m]);
return dp[m][k];
}
void init(){
scanf("%d%d%s",&n,&K,str+);
for(int i=;i<=n;i++){
A[i][i]=str[i]-'';
for(int j=i+;j<=n;j++)
A[i][j]=A[i][j-]*+(str[j]-'');
}
}
int main(){
init();
printf("%lld\n",dfs(n,K));
return ;
}