Python,PIL压缩裁剪图片

时间:2021-10-02 05:27:05

自己写了用来压缩 DC 照片的,批量处理整目录文件,非常方便。需要安装 PIL

  1. #!/usr/bin/env python
  2. import Image
  3. import os
  4. import os.path
  5. import sys
  6. path = sys.argv[1]
  7. small_path = (path[:-1] if path[-1]=='/' else path) +'_small'
  8. if not os.path.exists(small_path):
  9. os.mkdir(small_path)
  10. for root, dirs, files in os.walk(path):
  11. for f in files:
  12. fp = os.path.join(root, f)
  13. img = Image.open(fp)
  14. w, h = img.size
  15. img.resize((w/2, h/2)).save(os.path.join(small_path, f), "JPEG")
  16. print fp

python 中 base64 压缩图片,用post传送

Including binaries in your sources

Sometime it's handy to include small files in your sources (icons, test files, etc.) 
Let's take a file (myimage.gif) and convert it in base64 (optionnaly compressing it with zlib):

import base64,zlib

data = open('myimage.gif','rb').read() 
print base64.encodestring(zlib.compress(data))

Get the text created by this program and use it in your source:

import base64,zlib 
myFile = zlib.decompress(base64.decodestring(""" 
eJxz93SzsExUZlBn2MzA8P///zNnzvz79+/IgUMTJ05cu2aNaBmDzhIGHj7u58+fO11ksLO3Kyou 
ikqIEvLkcYyxV/zJwsgABDogAmQGA8t/gROejlpLMuau+j+1QdQxk20xwzqhslmHH5/xC94Q58ST
72nRllBw7cUDHZYbL8VtLOYbP/b6LhXB7tAcfPCpHA/fSvcJb1jZWB9c2/3XLmQ+03mZBBP+GOak
/AAZGXPL1BJe39jqjoqEAhFr1fBi1dao9g4Ovjo+lh6GFDVWJqbisLKoCq5p1X5s/Jw9IenrFvUz 
+mRXTeviY+4p2sKUflA1cjkX37TKWYwFzRpFYeqTs2fOqEuwXsfgOeGCfmZ57MP4WSpaZ0vSJy97
WPeY5ca8F1sYI5f5r2bjec+67nmaTcarm7+Z0hgY2Z7++fpCzHmBQCrPF94dAi/jj1oZt8R4qxsy 
6liJX/UVyLjwoHFxFK/VMWbN90rNrLKMGQ7iQSc7mXgTkpwPXVp0mlWz/JVC4NK0s0zcDWkcFxxF
mrvdlBdOnBySvtNvq8SBFZo8rF2MvAIMoZoPmZrZPj2buEDr2isXi0V8egpelyUvbXNc7yVQkKgS
sM7g0KOr7kq3WRIkitSuRj1VXbSk8v4zh8fljqtOhyobP91izvh0c2hwqKz3jPaHhvMMXVQspYq8
aiV9ivkmHri5u2NH8fvPpVWuK65I3OMUX+f4Lee+3Hmfux96Vq5RVqxTN38YeK3wRbVz5v06FSYG 
awWFgMzkktKiVIXkotTEktQUhaRKheDUpMTikszUPIVgx9AwR3dXBZvi1KTixNKyxPRUhcQSBSRe 
Sn6JQl5qiZ2CrkJGSUmBlb4+QlIPKKGgAADBbgMp"""))

print "I have a file of %d bytes." % len(myFile)

For example, if you use PIL (Python Imaging Library), you can directly open this image:

import Image,StringIO

myimage = Image.open(StringIO.StringIO(myFile))
myimage.show()

由于在建立我的摄影网站的时候需要使用一些压缩技术,来加快网站的访问速度。

所以,学习了一下如何在python的环境下压缩图片。

1. 下载安装PIL

下载安装按成以后,django报错了,说PIL包出现了错误

然后,我google了错误,找到了这个页面django,说不能使用PIL,必须使用pillow。

所以我又得卸载PIL。

当我使用pip,uninstall pil的时候,发现我的pip版本太低,需要升级,最后我使用easy_install 升级了pip。

重新安装pillow,最好先卸载了旧版本的pillow,然后再安装一次pillow。

完成了恢复。。。。太坑了。。。

2. 在使用PIL的使用,出现了IOError: decoder jpeg not available的错误

解决方法是:

install libpng and libjpeg package (combo installer) from this link: http://ethan.tira-thompson.com/Mac_OS_X_Ports.html
sudo pip install -I pillow

3. 使用PIL 压缩图片, 引用自 http://fc-lamp.blog.163.com/blog/static/174566687201282424018946/

#coding:utf-8'''    python图片处理    @author:fc_lamp    @blog:http://fc-lamp.blog.163.com/'''from PIL import Image as image#等比例压缩图片def resizeImg(**args):    args_key = {'ori_img':'','dst_img':'','dst_w':'','dst_h':'','save_q':75}    arg = {}    for key in args_key:        if key in args:            arg[key] = args[key]            im = image.open(arg['ori_img'])    ori_w,ori_h = im.size    widthRatio = heightRatio = None    ratio = 1    if (ori_w and ori_w > arg['dst_w']) or (ori_h and ori_h > arg['dst_h']):        if arg['dst_w'] and ori_w > arg['dst_w']:            widthRatio = float(arg['dst_w']) / ori_w #正确获取小数的方式        if arg['dst_h'] and ori_h > arg['dst_h']:            heightRatio = float(arg['dst_h']) / ori_h        if widthRatio and heightRatio:            if widthRatio < heightRatio:                ratio = widthRatio            else:                ratio = heightRatio        if widthRatio and not heightRatio:            ratio = widthRatio        if heightRatio and not widthRatio:            ratio = heightRatio                    newWidth = int(ori_w * ratio)        newHeight = int(ori_h * ratio)    else:        newWidth = ori_w        newHeight = ori_h            im.resize((newWidth,newHeight),image.ANTIALIAS).save(arg['dst_img'],quality=arg['save_q'])    '''    image.ANTIALIAS还有如下值:    NEAREST: use nearest neighbour    BILINEAR: linear interpolation in a 2x2 environment    BICUBIC:cubic spline interpolation in a 4x4 environment    ANTIALIAS:best down-sizing filter    '''#裁剪压缩图片def clipResizeImg(**args):        args_key = {'ori_img':'','dst_img':'','dst_w':'','dst_h':'','save_q':75}    arg = {}    for key in args_key:        if key in args:            arg[key] = args[key]            im = image.open(arg['ori_img'])    ori_w,ori_h = im.size    dst_scale = float(arg['dst_h']) / arg['dst_w'] #目标高宽比    ori_scale = float(ori_h) / ori_w #原高宽比    if ori_scale >= dst_scale:        #过高        width = ori_w        height = int(width*dst_scale)        x = 0        y = (ori_h - height) / 3            else:        #过宽        height = ori_h        width = int(height*dst_scale)        x = (ori_w - width) / 2        y = 0    #裁剪    box = (x,y,width+x,height+y)    #这里的参数可以这么认为:从某图的(x,y)坐标开始截,截到(width+x,height+y)坐标    #所包围的图像,crop方法与php中的imagecopy方法大为不一样    newIm = im.crop(box)    im = None    #压缩    ratio = float(arg['dst_w']) / width    newWidth = int(width * ratio)    newHeight = int(height * ratio)    newIm.resize((newWidth,newHeight),image.ANTIALIAS).save(arg['dst_img'],quality=arg['save_q'])    #水印(这里仅为图片水印)def waterMark(**args):    args_key = {'ori_img':'','dst_img':'','mark_img':'','water_opt':''}    arg = {}    for key in args_key:        if key in args:            arg[key] = args[key]            im = image.open(arg['ori_img'])    ori_w,ori_h = im.size    mark_im = image.open(arg['mark_img'])    mark_w,mark_h = mark_im.size    option ={'leftup':(0,0),'rightup':(ori_w-mark_w,0),'leftlow':(0,ori_h-mark_h),             'rightlow':(ori_w-mark_w,ori_h-mark_h)             }        im.paste(mark_im,option[arg['water_opt']],mark_im.convert('RGBA'))    im.save(arg['dst_img'])    '''    #Demon#源图片ori_img = './1.jpg'#水印标mark_img = 'D:/mark.png'#水印位置(右下)water_opt = 'rightlow'#目标图片dst_img = './QQQ20140106-1.jpg'#目标图片大小dst_w = 600dst_h = 600#保存的图片质量save_q = 35#裁剪压缩#clipResizeImg(ori_img=ori_img,dst_img=dst_img,dst_w=dst_w,dst_h=dst_h,save_q = save_q)#等比例压缩resizeImg(ori_img=ori_img,dst_img=ori_img,dst_w=dst_w,dst_h=dst_h,save_q=save_q)#水印#waterMark(ori_img=ori_img,dst_img=dst_img,mark_img=mark_img,water_opt=water_opt)'''

python(PIL)图像处理(等比例压缩、裁剪压缩) 缩略(水印)图

在开始前,你可以先了解一下PIL基础知识:http://tech.seety.org/python/python_imaging.html#coding:utf-8
'''
    python图片处理
    @author:fc_lamp
    @blog:http://fc-lamp.blog.163.com/
'''
import Image as image

#等比例压缩图片
def resizeImg(**args):
    args_key = {'ori_img':'','dst_img':'','dst_w':'','dst_h':'','save_q':75}
    arg = {}
    for key in args_key:
        if key in args:
            arg[key] = args[key]

    im = image.open(arg['ori_img'])
    ori_w,ori_h = im.size
    widthRatio = heightRatio = None
    ratio = 1
    if (ori_w and ori_w > arg['dst_w']) or (ori_h and ori_h > arg['dst_h']):
        if arg['dst_w'] and ori_w > arg['dst_w']:
            widthRatio = float(arg['dst_w']) / ori_w #正确获取小数的方式
        if arg['dst_h'] and ori_h > arg['dst_h']:
            heightRatio = float(arg['dst_h']) / ori_h

        if widthRatio and heightRatio:
            if widthRatio < heightRatio:
                ratio = widthRatio
            else:
                ratio = heightRatio

        if widthRatio and not heightRatio:
            ratio = widthRatio
        if heightRatio and not widthRatio:
            ratio = heightRatio

        newWidth = int(ori_w * ratio)
        newHeight = int(ori_h * ratio)
    else:
        newWidth = ori_w
        newHeight = ori_h

    im.resize((newWidth,newHeight),image.ANTIALIAS).save(arg['dst_img'],quality=arg['save_q'])

    '''
    image.ANTIALIAS还有如下值:
    NEAREST: use nearest neighbour
    BILINEAR: linear interpolation in a 2x2 environment
    BICUBIC:cubic spline interpolation in a 4x4 environment
    ANTIALIAS:best down-sizing filter
    '''

#裁剪压缩图片
def clipResizeImg(**args):

    args_key = {'ori_img':'','dst_img':'','dst_w':'','dst_h':'','save_q':75}
    arg = {}
    for key in args_key:
        if key in args:
            arg[key] = args[key]

    im = image.open(arg['ori_img'])
    ori_w,ori_h = im.size

    dst_scale = float(arg['dst_h']) / arg['dst_w'] #目标高宽比
    ori_scale = float(ori_h) / ori_w #原高宽比

    if ori_scale >= dst_scale:
        #过高
        width = ori_w
        height = int(width*dst_scale)

        x = 0
        y = (ori_h - height) / 3

    else:
        #过宽
        height = ori_h
        width = int(height*dst_scale)

        x = (ori_w - width) / 2
        y = 0

    #裁剪
    box = (x,y,width+x,height+y)
    #这里的参数可以这么认为:从某图的(x,y)坐标开始截,截到(width+x,height+y)坐标
    #所包围的图像,crop方法与php中的imagecopy方法大为不一样
    newIm = im.crop(box)
    im = None

    #压缩
    ratio = float(arg['dst_w']) / width
    newWidth = int(width * ratio)
    newHeight = int(height * ratio)
    newIm.resize((newWidth,newHeight),image.ANTIALIAS).save(arg['dst_img'],quality=arg['save_q'])

#水印(这里仅为图片水印)
def waterMark(**args):
    args_key = {'ori_img':'','dst_img':'','mark_img':'','water_opt':''}
    arg = {}
    for key in args_key:
        if key in args:
            arg[key] = args[key]

    im = image.open(arg['ori_img'])
    ori_w,ori_h = im.size

    mark_im = image.open(arg['mark_img'])
    mark_w,mark_h = mark_im.size
    option ={'leftup':(0,0),'rightup':(ori_w-mark_w,0),'leftlow':(0,ori_h-mark_h),
             'rightlow':(ori_w-mark_w,ori_h-mark_h)
             }

    im.paste(mark_im,option[arg['water_opt']],mark_im.convert('RGBA'))
    im.save(arg['dst_img'])

#Demon
#源图片
ori_img = 'D:/tt.jpg'
#水印标
mark_img = 'D:/mark.png'
#水印位置(右下)
water_opt = 'rightlow'
#目标图片
dst_img = 'D:/python_2.jpg'
#目标图片大小
dst_w = 94
dst_h = 94
#保存的图片质量
save_q = 35
#裁剪压缩
clipResizeImg(ori_img=ori_img,dst_img=dst_img,dst_w=dst_w,dst_h=dst_h,save_q = save_q)
#等比例压缩
#resizeImg(ori_img=ori_img,dst_img=dst_img,dst_w=dst_w,dst_h=dst_h,save_q=save_q)
#水印
#waterMark(ori_img=ori_img,dst_img=dst_img,mark_img=mark_img,water_opt=water_opt)

Python,PIL压缩裁剪图片的更多相关文章

  1. &period;mat转成&period;npy文件&plus;Python&lpar;Pytorch&rpar;压缩裁剪图片

    需求:现有数据文件V1.mat,里面包含多个数据集,现需将里面的images数据集提取出来,然后进行压缩裁剪成指定大小 V1.mat数据集目录: 1.从mat文件中提取数据(使用Python) V1. ...

  2. 基于Python PIL实现简单图片格式转化器

    基于Python PIL实现简单图片格式转化器 目录 基于Python PIL实现简单图片格式转化器 1.简介 2.前期资料准备 2.1.1如何实现图片格式转换? 2.1.2如何保存需要大小的图片? ...

  3. Python批量自动裁剪图片

    """用Pythonp批量裁剪图片""" from PIL import Image import matplotlib.pyplot as ...

  4. Python PIL创建文字图片

    PIL库中包含了很多模块,恰当地利用这些模块可以做许多图像处理方面的工作. 下面是我用来生成字母或字符串测试图片而写的类及测试代码. 主要用到的模块: PIL.Image,PIL.ImageDraw, ...

  5. Python PIL模块笔记

    利用python pil 实现给图片上添加文字 图片中添加文字#-*- coding: utf-8 -*- from PIL import Image,ImageDraw,ImageFont ttfo ...

  6. 使用Python PIL库中的Image&period;thumbnail函数裁剪图片

    今天,是我来到博客园的第五天,发现自己还没有头像,想着上传ubuntu系统中我很喜欢的一个背景图片来当头像,但是因为图片过大,上传失败了.那么,我们如何使用python中强大的PIL库来进行图片裁剪呢 ...

  7. iOS 压缩与裁剪图片问题

    我们假设要在截图中的举行图片展示区显示图片,由于原图片的宽高比例与图片显示窗口的宽高比例不一定相同,所以,直接将图片扔进去会改变图片的宽高比例,展示效果不好. 这时你可能想到设置UIImageView ...

  8. java多图片上传--前端实现预览--图片压缩 、图片缩放,区域裁剪,水印,旋转,保持比例。

    java多图片上传--前端实现预览 前端代码: https://pan.baidu.com/s/1cqKbmjBSXOhFX4HR1XGkyQ 解压后: java后台: <!--文件上传--&g ...

  9. tinypng的python批量压缩图片功能

    tinypng网站提供的图片压缩功能很不错,但是直接在网站上压缩有限制,大量压缩图片时比较麻烦,还好官方提供了很多脚本的自动化压缩接口.下面简单说下python批量压缩步骤. 1.申请api key ...

随机推荐

  1. 图片在保存的时候&equals;&equals;&equals;》出现这个异常:GDI&plus; 中发生一般性错误

    异常处理汇总-后端系列 http://www.cnblogs.com/dunitian/p/4523006.html 一般这种情况都是没有权限,比如目录没有创建就写入,或者没有写入文件的权限 我的是目 ...

  2. &lbrack;AapacheBench工具&rsqb;web性能压力测试工具的应用与实践

    背景:网站性能压力测试是性能调优过程中必不可少的一环.服务器负载太大而影响程序效率是很常见的事情,一个网站到底能够承受多大的用户访问量经常是我们最关心的问题.因此,只有让服务器处在高压情况下才能真正体 ...

  3. USACO section1&period;2 Transformation

    /* ID: vincent63 LANG: C TASK: transform */ #include <stdio.h> #include<stdlib.h> #inclu ...

  4. Coudera-Manager&sol;CDH的安装和部署

    由于之前部署的集群采用的是用apache hadoop的方式来实现,但是考虑到运维的成本问题,下面将apache hadoop转换成cloudera cdh.下面主要讲解一下cloudera cdh的 ...

  5. Codeforces Round &num;104 &lpar;Div&period; 1&rpar;

    A.Lucky Conversion 题意 给定两个长度为 \(N(N \le 10^5)\) 且由4和7构成的 \(a, b\)串 对 \(a\) 可以有两种操作: 交换两个位置的字符; 改变一个位 ...

  6. PC寄存器的真实状态

    因为预取指令的关系,PC寄存器永远比当前的寄存器多两个指令,ARM模式为大8,Thumb模式为大2,这针对的是32bit的ARMv7的指令集 In ARM state, the value of th ...

  7. DB&lowbar;NAME、DB&lowbar;UNIQUE&lowbar;NAME、SERVICE&lowbar;NAME和INSTANCE&lowbar;NAME等的区别

    摘自:http://space.itpub.net/7922095/viewspace-715406 搭建DG时,突然想起oracle这些为数众多的name,以下是概念整理,仅代表个人观点 DB_NA ...

  8. JFreeChart画折线图

    请见Github博客: http://wuxichen.github.io/Myblog/htmlcss/2014/09/01/JFreechartLinechart.html

  9. TreeSet&lpar;一&rpar;--排序

    TreeSet(一) 一.TreeSet定义:      与HashSet是基于HashMap实现一样,TreeSet同样是基于TreeMap实现的.            1)TreeSet类概述 ...

  10. easyUI使用datagrid-detailview&period;js实现二级列表嵌套

    本文为博主原创,转载请注明: 在easyUI中使用datagrid-detailview.js可快速实现二级折叠列表,示例如下: 注意事项: 原本在谷歌浏览器进行示例测试的,url请求对应的json文 ...