Tensorflow快餐教程(1) - 30行代码搞定手写识别

时间:2022-02-01 23:57:56

版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

去年买了几本讲tensorflow的书,结果今年看的时候发现有些样例代码所用的API已经过时了。看来自己维护一个保持更新的Tensorflow的教程还是有意义的。这是写这一系列的初心。
快餐教程系列希望能够尽可能降低门槛,少讲,讲透。
为了让大家在一开始就看到一个美好的场景,而不是停留在漫长的基础知识积累上,参考网上的一些教程,我们直接一开始就直接展示用tensorflow实现MNIST手写识别的例子。然后基础知识我们再慢慢讲。

Tensorflow安装速成教程

由于Python是跨平台的语言,所以在各系统上安装tensorflow都是一件相对比较容易的事情。GPU加速的事情我们后面再说。

Linux平台安装tensorflow

我们以Ubuntu 16.04版为例,首先安装python3和pip3。pip是python的包管理工具。

sudo apt install python3
sudo apt install python3-pip
  • 1
  • 2

然后就可以通过pip3来安装tensorflow:

pip3 install tensorflow --upgrade
  • 1

MacOS安装tensorflow

建议使用Homebrew来安装python。

brew install python3
  • 1

安装python3之后,还是通过pip3来安装tensorflow.

pip3 install tensorflow --upgrade
  • 1

Windows平台安装Tensorflow

Windows平台上建议通过Anaconda来安装tensorflow,下载地址在:https://www.anaconda.com/download/#windows

然后打开Anaconda Prompt,输入:

conda create -n tensorflow pip
activate tensorflow
pip install --ignore-installed --upgrade tensorflow
  • 1
  • 2
  • 3

这样就安装好了Tensorflow。

我们迅速来个例子试下好不好用:

import tensorflow as tf
a = tf.constant(1)
b = tf.constant(2) c = a * b sess = tf.Session() print(sess.run(c))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

输出结果为2.
Tensorflow顾名思义,是一些Tensor张量的流组成的运算。
运算需要一个Session来运行。如果print(c)的话,会得到

Tensor("mul_1:0", shape=(), dtype=int32)
  • 1

就是说这是一个乘法运算的Tensor,需要通过Session.run()来执行。

入门捷径:线性回归

我们首先看一个最简单的机器学习模型,线性回归的例子。
线性回归的模型就是一个矩阵乘法:

tf.multiply(X, w)
  • 1

然后我们通过调用Tensorflow计算梯度下降的函数tf.train.GradientDescentOptimizer来实现优化。
我们看下这个例子代码,只有30多行,逻辑还是很清晰的。例子来自github上大牛的工作:https://github.com/nlintz/TensorFlow-Tutorials,不是我的原创。

import tensorflow as tf
import numpy as np trX = np.linspace(-1, 1, 101)
trY = 2 * trX + np.random.randn(*trX.shape) * 0.33 # 创建一些线性值附近的随机值 X = tf.placeholder("float")
Y = tf.placeholder("float") def model(X, w):
return tf.multiply(X, w) # X*w线性求值,非常简单 w = tf.Variable(0.0, name="weights")
y_model = model(X, w) cost = tf.square(Y - y_model) # 用平方误差做为优化目标 train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost) # 梯度下降优化 # 开始创建Session干活!
with tf.Session() as sess:
# 首先需要初始化全局变量,这是Tensorflow的要求
tf.global_variables_initializer().run() for i in range(100):
for (x, y) in zip(trX, trY):
sess.run(train_op, feed_dict={X: x, Y: y}) print(sess.run(w))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

最终会得到一个接近2的值,比如我这次运行的值为1.9183811

多种方式搞定手写识别

线性回归不过瘾,我们直接一步到位,开始进行手写识别。
Tensorflow快餐教程(1) - 30行代码搞定手写识别

我们采用深度学习三巨头之一的Yann Lecun教授的MNIST数据为例。如上图所示,MNIST的数据是28x28的图像,并且标记了它的值应该是什么。

线性模型:logistic回归

我们首先不管三七二十一,就用线性模型来做分类。
算上注释和空行,一共加起来30行左右,我们就可以解决手写识别这么困难的问题啦!请看代码:

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w):
return tf.matmul(X, w) # 模型还是矩阵乘法 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784])
Y = tf.placeholder("float", [None, 10]) w = init_weights([784, 10])
py_x = model(X, w) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # 计算误差
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct optimizer
predict_op = tf.argmax(py_x, 1) with tf.Session() as sess:
tf.global_variables_initializer().run() for i in range(100):
for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)):
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})
print(i, np.mean(np.argmax(teY, axis=1) ==
sess.run(predict_op, feed_dict={X: teX})))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

经过100轮的训练,我们的准确率是92.36%。

无脑的浅层神经网络

用了最简单的线性模型,我们换成经典的神经网络来实现这个功能。神经网络的图如下图所示。

Tensorflow快餐教程(1) - 30行代码搞定手写识别

我们还是不管三七二十一,建立一个隐藏层,用最传统的sigmoid函数做激活函数。其核心逻辑还是矩阵乘法,这里面没有任何技巧。

    h = tf.nn.sigmoid(tf.matmul(X, w_h))
return tf.matmul(h, w_o)
  • 1
  • 2

完整代码如下,仍然是40多行,不长:

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data # 所有连接随机生成权值
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w_h, w_o):
h = tf.nn.sigmoid(tf.matmul(X, w_h))
return tf.matmul(h, w_o) mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784])
Y = tf.placeholder("float", [None, 10]) w_h = init_weights([784, 625])
w_o = init_weights([625, 10]) py_x = model(X, w_h, w_o) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # 计算误差损失
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct an optimizer
predict_op = tf.argmax(py_x, 1) with tf.Session() as sess:
tf.global_variables_initializer().run() for i in range(100):
for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)):
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})
print(i, np.mean(np.argmax(teY, axis=1) ==
sess.run(predict_op, feed_dict={X: teX})))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

第一轮运行,我这次的准确率只有69.11% ,第二次就提升到了82.29%。最终结果是95.41%,比Logistic回归的强!
请注意我们模型的核心那两行代码,完全就是无脑地全连接做了一个隐藏层而己,这其中没有任何的技术。完全是靠神经网络的模型能力。

深度学习时代的方案 - ReLU和Dropout显神通

上一个技术含量有点低,现在是深度学习的时代了,我们有很多进步。比如我们知道要将sigmoid函数换成ReLU函数。我们还知道要做Dropout了。于是我们还是一个隐藏层,写个更现代一点的模型吧:

    X = tf.nn.dropout(X, p_keep_input)
h = tf.nn.relu(tf.matmul(X, w_h)) h = tf.nn.dropout(h, p_keep_hidden)
h2 = tf.nn.relu(tf.matmul(h, w_h2)) h2 = tf.nn.dropout(h2, p_keep_hidden) return tf.matmul(h2, w_o)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

除了ReLU和dropout这两个技巧,我们仍然只有一个隐藏层,表达能力没有太大的增强。并不能算是深度学习。

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden):
X = tf.nn.dropout(X, p_keep_input)
h = tf.nn.relu(tf.matmul(X, w_h)) h = tf.nn.dropout(h, p_keep_hidden)
h2 = tf.nn.relu(tf.matmul(h, w_h2)) h2 = tf.nn.dropout(h2, p_keep_hidden) return tf.matmul(h2, w_o) mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784])
Y = tf.placeholder("float", [None, 10]) w_h = init_weights([784, 625])
w_h2 = init_weights([625, 625])
w_o = init_weights([625, 10]) p_keep_input = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")
py_x = model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1) with tf.Session() as sess:
# you need to initialize all variables
tf.global_variables_initializer().run() for i in range(100):
for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)):
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
p_keep_input: 0.8, p_keep_hidden: 0.5})
print(i, np.mean(np.argmax(teY, axis=1) ==
sess.run(predict_op, feed_dict={X: teX,
p_keep_input: 1.0,
p_keep_hidden: 1.0})))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

从结果看到,第二次就达到了96%以上的正确率。后来就一直在98.4%左右游荡。仅仅是ReLU和Dropout,就把准确率从95%提升到了98%以上。

卷积神经网络出场

真正的深度学习利器CNN,卷积神经网络出场。这次的模型比起前面几个无脑型的,的确是复杂一些。涉及到卷积层和池化层。这个是需要我们后面详细讲一讲了。

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data batch_size = 128
test_size = 256 def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden):
l1a = tf.nn.relu(tf.nn.conv2d(X, w, # l1a shape=(?, 28, 28, 32)
strides=[1, 1, 1, 1], padding='SAME'))
l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], # l1 shape=(?, 14, 14, 32)
strides=[1, 2, 2, 1], padding='SAME')
l1 = tf.nn.dropout(l1, p_keep_conv) l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, # l2a shape=(?, 14, 14, 64)
strides=[1, 1, 1, 1], padding='SAME'))
l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], # l2 shape=(?, 7, 7, 64)
strides=[1, 2, 2, 1], padding='SAME')
l2 = tf.nn.dropout(l2, p_keep_conv) l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, # l3a shape=(?, 7, 7, 128)
strides=[1, 1, 1, 1], padding='SAME'))
l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], # l3 shape=(?, 4, 4, 128)
strides=[1, 2, 2, 1], padding='SAME')
l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]) # reshape to (?, 2048)
l3 = tf.nn.dropout(l3, p_keep_conv) l4 = tf.nn.relu(tf.matmul(l3, w4))
l4 = tf.nn.dropout(l4, p_keep_hidden) pyx = tf.matmul(l4, w_o)
return pyx mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
trX = trX.reshape(-1, 28, 28, 1) # 28x28x1 input img
teX = teX.reshape(-1, 28, 28, 1) # 28x28x1 input img X = tf.placeholder("float", [None, 28, 28, 1])
Y = tf.placeholder("float", [None, 10]) w = init_weights([3, 3, 1, 32]) # 3x3x1 conv, 32 outputs
w2 = init_weights([3, 3, 32, 64]) # 3x3x32 conv, 64 outputs
w3 = init_weights([3, 3, 64, 128]) # 3x3x32 conv, 128 outputs
w4 = init_weights([128 * 4 * 4, 625]) # FC 128 * 4 * 4 inputs, 625 outputs
w_o = init_weights([625, 10]) # FC 625 inputs, 10 outputs (labels) p_keep_conv = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")
py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1) with tf.Session() as sess:
# you need to initialize all variables
tf.global_variables_initializer().run() for i in range(100):
training_batch = zip(range(0, len(trX), batch_size),
range(batch_size, len(trX)+1, batch_size))
for start, end in training_batch:
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
p_keep_conv: 0.8, p_keep_hidden: 0.5}) test_indices = np.arange(len(teX)) # Get A Test Batch
np.random.shuffle(test_indices)
test_indices = test_indices[0:test_size] print(i, np.mean(np.argmax(teY[test_indices], axis=1) ==
sess.run(predict_op, feed_dict={X: teX[test_indices],
p_keep_conv: 1.0,
p_keep_hidden: 1.0})))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77

我们看下这次的运行数据:

0 0.95703125
1 0.9921875
2 0.9921875
3 0.98046875
4 0.97265625
5 0.98828125
6 0.99609375
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在第6轮的时候,就跑出了99.6%的高分值,比ReLU和Dropout的一个隐藏层的神经网络的98.4%大大提高。因为难度是越到后面越困难。
在第16轮的时候,竟然跑出了100%的正确率:

7 0.99609375
8 0.99609375
9 0.98828125
10 0.98828125
11 0.9921875
12 0.98046875
13 0.99609375
14 0.9921875
15 0.99609375
16 1.0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

综上,借助Tensorflow和机器学习工具,我们只有几十行代码,就解决了手写识别这样级别的问题,而且准确度可以达到如此程度。

下一节,我们回到基础讲起。