以太坊源码分析(30)eth-bloombits和filter源码分析

时间:2024-04-13 11:03:15
## 以太坊的布隆过滤器

以太坊的区块头中包含了一个叫做logsBloom的区域。 这个区域存储了当前区块中所有的收据的日志的布隆过滤器,一共是2048个bit。也就是256个字节。

而我们的一个交易的收据包含了很多的日志记录。 每个日志记录包含了 合约的地址, 多个Topic。 而在我们的收据中也存在一个布隆过滤器,这个布隆过滤器记录了所有的日志记录的信息。

如果我们看黄皮书里面对日志记录的形式化定义。

O代表我们的日志记录,Oa代表logger的地址,Oto,Ot1代表日志的Topics, Od代表时间。

Oa是20个字节,Ot是32个字节,Od是很多字节

我们定义了一个布隆过滤器函数M,用来把一个日志对象转换成256字节的hash

M3:2045是一个特别的函数,用来设置2048个bit位中的三位为1。


对于任意的输入值,首先求他的KEC输出, 然后通过取KEC输出的 [0,1] [2,3],[4,5] 这几位的值 对2048取模, 得到三个值, 这三个值就是输出的2048中需要置位的下标。 也就是说对于任何一个输入,如果它对应的三个下标的值不都为1,那么它肯定不在这个区块中。 当如如果对应的三位都为1,也不能说明一定在这个区块中。 这就是布隆过滤器的特性。

收据中的布隆过滤器就是所有的日志的布隆过滤器输出的并集。

同时区块头中的logBloom,就是所有的收据的布隆过滤器的并集。

## ChainIndexer 和 BloomIndexer
最开始看到ChainIndexer,不是很明白是什么功能。 其实从名字中可以看到,是Chain的索引。 在 eth中我们有看到BloomIndexer,这个就是布隆过滤器的索引。

在我们的协议中提供了查找指定Log的功能。

用户可以通过传递下面的参数来查找指定的Log,开始的区块号,结束的区块号, 根据合约 Addresses指定的地址过滤,根据指定的Topics来过滤。

    // FilterCriteria represents a request to create a new filter.
    type FilterCriteria struct {
        FromBlock *big.Int
        ToBlock *big.Int
        Addresses []common.Address
        Topics [][]common.Hash
    }

如果开始和结束之间间隔很大,那么如果直接依次检索每个区块头的logBloom区域是比较低效的。 因为每个区块头都是分开存储的, 可能需要非常多的磁盘随机访问。

所以以太坊协议在本地维护了一套索引,用来加速这个过程。

大致原理是。 每4096个区块称为一个Section,一个Section里面的logBloom会存储在一起。对于每个Section, 用一个二维数据,A[2048][4096]来存储。 第一维2048代表了bloom过滤器的长度2048个字节。 第二维4096代表了一个Section里面的所有区块,每一个位置按照顺序代表了其中的一个区块。

- A[0][0]=blockchain[section*4096+0].logBloom[0],
- A[0][1]=blockchain[section*4096+1].logBloom[0],
- A[0][4096]=blockchain[section*4096+1].logBloom[0],
- A[1][0]=blockchain[section*4096+0].logBloom[1],
- A[1][1024]=blockchain[section*4096+1024].logBloom[1],
- A[2047][1]=blockchain[section*4096+1].logBloom[2047],

如果Section填充完毕,那么会写成2048个KV。
![image](picture/bloom_6.png)


## bloombit.go 代码分析

这个代码相对不是很独立,如果单独看这个代码,有点摸不着头脑的感觉, 因为它只是实现了一些接口,具体的处理逻辑并不在这里,而是在core里面。 不过这里我先结合之前讲到的信息分析一下。 后续更详细的逻辑在分析core的代码的时候再详细分析。

服务线程startBloomHandlers,这个方法是为了响应具体的查询请求, 给定指定的Section和bit来从levelDB里面查询然后返回出去。 单独看这里有点摸不着头脑。 这个方法的调用比较复杂。 涉及到core里面的很多逻辑。 这里先不细说了。 直到有这个方法就行了。

    type Retrieval struct {
        Bit uint           //Bit的取值 0-2047 代表了想要获取哪一位的值
        Sections []uint64       // 那些Section
        Bitsets [][]byte       // 返回值 查询出来的结果。
    }
    // startBloomHandlers starts a batch of goroutines to accept bloom bit database
    // retrievals from possibly a range of filters and serving the data to satisfy.
    func (eth *Ethereum) startBloomHandlers() {
        for i := 0; i < bloomServiceThreads; i++ {
            go func() {
                for {
                    select {
                    case <-eth.shutdownChan:
                        return
    
                    case request := <-eth.bloomRequests: // request是一个通道
                        task := <-request //从通道里面获取一个task
    
                        task.Bitsets = make([][]byte, len(task.Sections))
                        for i, section := range task.Sections {
                            head := core.GetCanonicalHash(eth.chainDb, (section+1)*params.BloomBitsBlocks-1)
                            blob, err := bitutil.DecompressBytes(core.GetBloomBits(eth.chainDb, task.Bit, section, head), int(params.BloomBitsBlocks)/8)
                            if err != nil {
                                panic(err)
                            }
                            task.Bitsets[i] = blob
                        }
                        request <- task //通过request通道返回结果
                    }
                }
            }()
        }
    }


### 数据结构
BloomIndexer对象主要用户构建索引的过程,是core.ChainIndexer的一个接口实现,所以只实现了一些必须的接口。对于创建索引的逻辑还在core.ChainIndexer里面。


    
    // BloomIndexer implements a core.ChainIndexer, building up a rotated bloom bits index
    // for the Ethereum header bloom filters, permitting blazing fast filtering.
    type BloomIndexer struct {
        size uint64 // section size to generate bloombits for
    
        db ethdb.Database // database instance to write index data and metadata into
        gen *bloombits.Generator // generator to rotate the bloom bits crating the bloom index
    
        section uint64 // Section is the section number being processed currently 当前的section
        head common.Hash // Head is the hash of the last header processed
    }

    // NewBloomIndexer returns a chain indexer that generates bloom bits data for the
    // canonical chain for fast logs filtering.
    func NewBloomIndexer(db ethdb.Database, size uint64) *core.ChainIndexer {
        backend := &BloomIndexer{
            db: db,
            size: size,
        }
        table := ethdb.NewTable(db, string(core.BloomBitsIndexPrefix))
    
        return core.NewChainIndexer(db, table, backend, size, bloomConfirms, bloomThrottling, "bloombits")
    }

Reset实现了ChainIndexerBackend的方法,启动一个新的section

    // Reset implements core.ChainIndexerBackend, starting a new bloombits index
    // section.
    func (b *BloomIndexer) Reset(section uint64) {
        gen, err := bloombits.NewGenerator(uint(b.size))
        if err != nil {
            panic(err)
        }
        b.gen, b.section, b.head = gen, section, common.Hash{}
    }

Process实现了ChainIndexerBackend, 增加一个新的区块头到index
    
    // Process implements core.ChainIndexerBackend, adding a new header's bloom into
    // the index.
    func (b *BloomIndexer) Process(header *types.Header) {
        b.gen.AddBloom(uint(header.Number.Uint64()-b.section*b.size), header.Bloom)
        b.head = header.Hash()
    }

Commit方法实现了ChainIndexerBackend,持久化并写入数据库。
    
    // Commit implements core.ChainIndexerBackend, finalizing the bloom section and
    // writing it out into the database.
    func (b *BloomIndexer) Commit() error {
        batch := b.db.NewBatch()
    
        for i := 0; i < types.BloomBitLength; i++ {
            bits, err := b.gen.Bitset(uint(i))
            if err != nil {
                return err
            }
            core.WriteBloomBits(batch, uint(i), b.section, b.head, bitutil.CompressBytes(bits))
        }
        return batch.Write()
    }

## filter/api.go 源码分析

eth/filter 包 包含了给用户提供过滤的功能,用户可以通过调用对交易或者区块进行过滤,然后持续的获取结果,如果5分钟没有操作,这个过滤器会被删除。


过滤器的结构。

    var (
        deadline = 5 * time.Minute // consider a filter inactive if it has not been polled for within deadline
    )
    
    // filter is a helper struct that holds meta information over the filter type
    // and associated subscription in the event system.
    type filter struct {
        typ Type           // 过滤器的类型, 过滤什么类型的数据
        deadline *time.Timer // filter is inactiv when deadline triggers 当计时器响起的时候,会触发定时器。
        hashes []common.Hash //过滤出来的hash结果
        crit FilterCriteria //过滤条件
        logs []*types.Log //过滤出来的Log信息
        s *Subscription // associated subscription in event system 事件系统中的订阅器。
    }

构造方法

    // PublicFilterAPI offers support to create and manage filters. This will allow external clients to retrieve various
    // information related to the Ethereum protocol such als blocks, transactions and logs.
    // PublicFilterAPI用来创建和管理过滤器。 允许外部的客户端获取以太坊协议的一些信息,比如区块信息,交易信息和日志信息。
    type PublicFilterAPI struct {
        backend Backend
        mux *event.TypeMux
        quit chan struct{}
        chainDb ethdb.Database
        events *EventSystem
        filtersMu sync.Mutex
        filters map[rpc.ID]*filter
    }
    
    // NewPublicFilterAPI returns a new PublicFilterAPI instance.
    func NewPublicFilterAPI(backend Backend, lightMode bool) *PublicFilterAPI {
        api := &PublicFilterAPI{
            backend: backend,
            mux: backend.EventMux(),
            chainDb: backend.ChainDb(),
            events: NewEventSystem(backend.EventMux(), backend, lightMode),
            filters: make(map[rpc.ID]*filter),
        }
        go api.timeoutLoop()
    
        return api
    }

### 超时检查
    
    // timeoutLoop runs every 5 minutes and deletes filters that have not been recently used.
    // Tt is started when the api is created.
    // 每隔5分钟检查一下。 如果过期的过滤器,删除。
    func (api *PublicFilterAPI) timeoutLoop() {
        ticker := time.NewTicker(5 * time.Minute)
        for {
            <-ticker.C
            api.filtersMu.Lock()
            for id, f := range api.filters {
                select {
                case <-f.deadline.C:
                    f.s.Unsubscribe()
                    delete(api.filters, id)
                default:
                    continue
                }
            }
            api.filtersMu.Unlock()
        }
    }



NewPendingTransactionFilter,用来创建一个PendingTransactionFilter。 这种方式是用来给那种无法创建长连接的通道使用的(比如HTTP), 如果对于可以建立长链接的通道(比如WebSocket)可以使用rpc提供的发送订阅模式来处理,就不用持续的轮询了
    
    // NewPendingTransactionFilter creates a filter that fetches pending transaction hashes
    // as transactions enter the pending state.
    //
    // It is part of the filter package because this filter can be used throug the
    // `eth_getFilterChanges` polling method that is also used for log filters.
    //
    // https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_newpendingtransactionfilter
    func (api *PublicFilterAPI) NewPendingTransactionFilter() rpc.ID {
        var (
            pendingTxs = make(chan common.Hash)
            // 在事件系统订阅这种消息
            pendingTxSub = api.events.SubscribePendingTxEvents(pendingTxs)
        )
    
        api.filtersMu.Lock()
        api.filters[pendingTxSub.ID] = &filter{typ: PendingTransactionsSubscription, deadline: time.NewTimer(deadline), hashes: make([]common.Hash, 0), s: pendingTxSub}
        api.filtersMu.Unlock()
    
        go func() {
            for {
                select {
                case ph := <-pendingTxs: // 接收到pendingTxs,存储在过滤器的hashes容器里面。
                    api.filtersMu.Lock()
                    if f, found := api.filters[pendingTxSub.ID]; found {
                        f.hashes = append(f.hashes, ph)
                    }
                    api.filtersMu.Unlock()
                case <-pendingTxSub.Err():
                    api.filtersMu.Lock()
                    delete(api.filters, pendingTxSub.ID)
                    api.filtersMu.Unlock()
                    return
                }
            }
        }()
    
        return pendingTxSub.ID
    }

轮询: GetFilterChanges
    
    // GetFilterChanges returns the logs for the filter with the given id since
    // last time it was called. This can be used for polling.
    // GetFilterChanges 用来返回从上次调用到现在的所有的指定id的所有过滤信息。这个可以用来轮询。
    // For pending transaction and block filters the result is []common.Hash.
    // (pending)Log filters return []Log.
    // 对于pending transaction和block的过滤器,返回结果类型是[]common.Hash. 对于pending Log 过滤器,返回的是 []Log
    // https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getfilterchanges
    func (api *PublicFilterAPI) GetFilterChanges(id rpc.ID) (interface{}, error) {
        api.filtersMu.Lock()
        defer api.filtersMu.Unlock()
    
        if f, found := api.filters[id]; found {
            if !f.deadline.Stop() { // 如果定时器已经触发,但是filter还没有移除,那么我们先接收定时器的值,然后重置定时器
                // timer expired but filter is not yet removed in timeout loop
                // receive timer value and reset timer
                <-f.deadline.C
            }
            f.deadline.Reset(deadline)
    
            switch f.typ {
            case PendingTransactionsSubscription, BlocksSubscription:
                hashes := f.hashes
                f.hashes = nil
                return returnHashes(hashes), nil
            case LogsSubscription:
                logs := f.logs
                f.logs = nil
                return returnLogs(logs), nil
            }
        }
    
        return []interface{}{}, fmt.Errorf("filter not found")
    }



对于可以建立长连接的通道,可以直接使用rpc的发送订阅模式, 这样客户端就可以直接接收到过滤信息,不用调用轮询的方式了。 可以看到这种模式下面并没有添加到filters这个容器,也没有超时管理了。也就是说支持两种模式。

    // NewPendingTransactions creates a subscription that is triggered each time a transaction
    // enters the transaction pool and was signed from one of the transactions this nodes manages.
    func (api *PublicFilterAPI) NewPendingTransactions(ctx context.Context) (*rpc.Subscription, error) {
        notifier, supported := rpc.NotifierFromContext(ctx)
        if !supported {
            return &rpc.Subscription{}, rpc.ErrNotificationsUnsupported
        }
    
        rpcSub := notifier.CreateSubscription()
    
        go func() {
            txHashes := make(chan common.Hash)
            pendingTxSub := api.events.SubscribePendingTxEvents(txHashes)
    
            for {
                select {
                case h := <-txHashes:
                    notifier.Notify(rpcSub.ID, h)
                case <-rpcSub.Err():
                    pendingTxSub.Unsubscribe()
                    return
                case <-notifier.Closed():
                    pendingTxSub.Unsubscribe()
                    return
                }
            }
        }()
    
        return rpcSub, nil
    }


日志过滤功能,根据FilterCriteria指定的参数,来对日志进行过滤,开始区块,结束区块,地址和Topics,这里面引入了一个新的对象filter
    
    // FilterCriteria represents a request to create a new filter.
    type FilterCriteria struct {
        FromBlock *big.Int
        ToBlock *big.Int
        Addresses []common.Address
        Topics [][]common.Hash
    }
        
    // GetLogs returns logs matching the given argument that are stored within the state.
    //
    // https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getlogs
    func (api *PublicFilterAPI) GetLogs(ctx context.Context, crit FilterCriteria) ([]*types.Log, error) {
        // Convert the RPC block numbers into internal representations
        if crit.FromBlock == nil {
            crit.FromBlock = big.NewInt(rpc.LatestBlockNumber.Int64())
        }
        if crit.ToBlock == nil {
            crit.ToBlock = big.NewInt(rpc.LatestBlockNumber.Int64())
        }
        // Create and run the filter to get all the logs
        // 创建了一个Filter对象 然后调用filter.Logs
        filter := New(api.backend, crit.FromBlock.Int64(), crit.ToBlock.Int64(), crit.Addresses, crit.Topics)
    
        logs, err := filter.Logs(ctx)
        if err != nil {
            return nil, err
        }
        return returnLogs(logs), err
    }


## filter.go
fiter.go里面定义了一个Filter对象。这个对象主要用来根据 区块的BloomIndexer和布隆过滤器等来执行日志的过滤功能。

### 数据结构
    // 后端, 这个后端其实是在core里面实现的。 布隆过滤器的主要算法在core里面实现了。
    type Backend interface {
        ChainDb() ethdb.Database
        EventMux() *event.TypeMux
        HeaderByNumber(ctx context.Context, blockNr rpc.BlockNumber) (*types.Header, error)
        GetReceipts(ctx context.Context, blockHash common.Hash) (types.Receipts, error)
    
        SubscribeTxPreEvent(chan<- core.TxPreEvent) event.Subscription
        SubscribeChainEvent(ch chan<- core.ChainEvent) event.Subscription
        SubscribeRemovedLogsEvent(ch chan<- core.RemovedLogsEvent) event.Subscription
        SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription
    
        BloomStatus() (uint64, uint64)
        ServiceFilter(ctx context.Context, session *bloombits.MatcherSession)
    }
    
    // Filter can be used to retrieve and filter logs.
    type Filter struct {
        backend Backend             // 后端
    
        db ethdb.Database   // 数据库
        begin, end int64            // 开始结束区块
        addresses []common.Address // 筛选地址
        topics [][]common.Hash  // 筛选主题
    
        matcher *bloombits.Matcher  // 布隆过滤器的匹配器
    }

构造函数把address和topic都加入到filters容器。然后构建了一个bloombits.NewMatcher(size, filters)。这个函数在core里面实现, 暂时不会讲解。

    // New creates a new filter which uses a bloom filter on blocks to figure out whether
    // a particular block is interesting or not.
    func New(backend Backend, begin, end int64, addresses []common.Address, topics [][]common.Hash) *Filter {
        // Flatten the address and topic filter clauses into a single bloombits filter
        // system. Since the bloombits are not positional, nil topics are permitted,
        // which get flattened into a nil byte slice.
        var filters [][][]byte
        if len(addresses) > 0 {
            filter := make([][]byte, len(addresses))
            for i, address := range addresses {
                filter[i] = address.Bytes()
            }
            filters = append(filters, filter)
        }
        for _, topicList := range topics {
            filter := make([][]byte, len(topicList))
            for i, topic := range topicList {
                filter[i] = topic.Bytes()
            }
            filters = append(filters, filter)
        }
        // Assemble and return the filter
        size, _ := backend.BloomStatus()
    
        return &Filter{
            backend: backend,
            begin: begin,
            end: end,
            addresses: addresses,
            topics: topics,
            db: backend.ChainDb(),
            matcher: bloombits.NewMatcher(size, filters),
        }
    }


Logs 执行过滤

    // Logs searches the blockchain for matching log entries, returning all from the
    // first block that contains matches, updating the start of the filter accordingly.
    func (f *Filter) Logs(ctx context.Context) ([]*types.Log, error) {
        // Figure out the limits of the filter range
        header, _ := f.backend.HeaderByNumber(ctx, rpc.LatestBlockNumber)
        if header == nil {
            return nil, nil
        }
        head := header.Number.Uint64()
    
        if f.begin == -1 {
            f.begin = int64(head)
        }
        end := uint64(f.end)
        if f.end == -1 {
            end = head
        }
        // Gather all indexed logs, and finish with non indexed ones
        var (
            logs []*types.Log
            err error
        )
        size, sections := f.backend.BloomStatus()
        // indexed 是指创建了索引的区块的最大值。 如果过滤的范围落在了创建了索引的部分。
        // 那么执行索引搜索。
        if indexed := sections * size; indexed > uint64(f.begin) {
            if indexed > end {
                logs, err = f.indexedLogs(ctx, end)
            } else {
                logs, err = f.indexedLogs(ctx, indexed-1)
            }
            if err != nil {
                return logs, err
            }
        }
        // 对于剩下的部分执行非索引的搜索。
        rest, err := f.unindexedLogs(ctx, end)
        logs = append(logs, rest...)
        return logs, err
    }


索引搜索

    // indexedLogs returns the logs matching the filter criteria based on the bloom
    // bits indexed available locally or via the network.
    func (f *Filter) indexedLogs(ctx context.Context, end uint64) ([]*types.Log, error) {
        // Create a matcher session and request servicing from the backend
        matches := make(chan uint64, 64)
        // 启动matcher
        session, err := f.matcher.Start(uint64(f.begin), end, matches)
        if err != nil {
            return nil, err
        }
        defer session.Close(time.Second)
        // 进行过滤服务。 这些都在core里面。后续分析core的代码会进行分析。
        
        f.backend.ServiceFilter(ctx, session)
    
        // Iterate over the matches until exhausted or context closed
        var logs []*types.Log
    
        for {
            select {
            case number, ok := <-matches:
                // Abort if all matches have been fulfilled
                if !ok { // 没有接收到值并且channel已经被关闭
                    f.begin = int64(end) + 1 //更新begin。以便于下面的非索引搜索
                    return logs, nil
                }
                // Retrieve the suggested block and pull any truly matching logs
                header, err := f.backend.HeaderByNumber(ctx, rpc.BlockNumber(number))
                if header == nil || err != nil {
                    return logs, err
                }
                found, err := f.checkMatches(ctx, header) //查找匹配的值
                if err != nil {
                    return logs, err
                }
                logs = append(logs, found...)
    
            case <-ctx.Done():
                return logs, ctx.Err()
            }
        }
    }

checkMatches,拿到所有的收据,并从收据中拿到所有的日志。 执行filterLogs方法。
    
    // checkMatches checks if the receipts belonging to the given header contain any log events that
    // match the filter criteria. This function is called when the bloom filter signals a potential match.
    func (f *Filter) checkMatches(ctx context.Context, header *types.Header) (logs []*types.Log, err error) {
        // Get the logs of the block
        receipts, err := f.backend.GetReceipts(ctx, header.Hash())
        if err != nil {
            return nil, err
        }
        var unfiltered []*types.Log
        for _, receipt := range receipts {
            unfiltered = append(unfiltered, ([]*types.Log)(receipt.Logs)...)
        }
        logs = filterLogs(unfiltered, nil, nil, f.addresses, f.topics)
        if len(logs) > 0 {
            return logs, nil
        }
        return nil, nil
    }

filterLogs,这个方法从给定的logs里面找到能够匹配上的。并返回。

    // filterLogs creates a slice of logs matching the given criteria.
    func filterLogs(logs []*types.Log, fromBlock, toBlock *big.Int, addresses []common.Address, topics [][]common.Hash) []*types.Log {
        var ret []*types.Log
    Logs:
        for _, log := range logs {
            if fromBlock != nil && fromBlock.Int64() >= 0 && fromBlock.Uint64() > log.BlockNumber {
                continue
            }
            if toBlock != nil && toBlock.Int64() >= 0 && toBlock.Uint64() < log.BlockNumber {
                continue
            }
    
            if len(addresses) > 0 && !includes(addresses, log.Address) {
                continue
            }
            // If the to filtered topics is greater than the amount of topics in logs, skip.
            if len(topics) > len(log.Topics) {
                continue Logs
            }
            for i, topics := range topics {
                match := len(topics) == 0 // empty rule set == wildcard
                for _, topic := range topics {
                    if log.Topics[i] == topic {
                        match = true
                        break
                    }
                }
                if !match {
                    continue Logs
                }
            }
            ret = append(ret, log)
        }
        return ret
    }

unindexedLogs,非索引查询,循环遍历所有的区块。 首先用区块里面的header.Bloom来看是否有可能存在,如果有可能存在, 再使用checkMatches来检索所有的匹配。
    
    // indexedLogs returns the logs matching the filter criteria based on raw block
    // iteration and bloom matching.
    func (f *Filter) unindexedLogs(ctx context.Context, end uint64) ([]*types.Log, error) {
        var logs []*types.Log
    
        for ; f.begin <= int64(end); f.begin++ {
            header, err := f.backend.HeaderByNumber(ctx, rpc.BlockNumber(f.begin))
            if header == nil || err != nil {
                return logs, err
            }
            if bloomFilter(header.Bloom, f.addresses, f.topics) {
                found, err := f.checkMatches(ctx, header)
                if err != nil {
                    return logs, err
                }
                logs = append(logs, found...)
            }
        }
        return logs, nil
    }

## 总结
filter源码包主要实现了两个功能,
- 提供了 发布订阅模式的filter RPC。用来给rpc客户端提供实时的交易,区块,日志等的过滤
- 提供了 基于bloomIndexer的日志过滤模式,这种模式下,可以快速的对大量区块执行布隆过滤操作。 还提供了历史的日志的过滤操作。

以太坊源码分析(30)eth-bloombits和filter源码分析

以太坊源码分析(30)eth-bloombits和filter源码分析以太坊源码分析(30)eth-bloombits和filter源码分析

网址:http://www.qukuailianxueyuan.io/

以太坊源码分析(30)eth-bloombits和filter源码分析

以太坊源码分析(30)eth-bloombits和filter源码分析

欲领取造币技术与全套虚拟机资料

区块链技术交流QQ群:756146052  备注:****

尹成学院微信:备注:****

以太坊源码分析(30)eth-bloombits和filter源码分析