原问题
对偶问题
本文用交替方向乘子法(Alternating Direction Method of Multipilers)实现线性规划问题的求解器。
代码如下:
function [x] = LP_ADMM_dual(c, A, b, opts, x0)
m = size(A,1);
n = size(A,2);
% 随机初始化
y = randn(m,1);
x = x0;
s = randn(n,1);
t = 0.1; % ALM rate
S = A*A';
U = chol(S);
L = U'; %cholesky decomposition: S = L*U = U'*U
err = 1;
x_old = x;
while(err > 1e-6)
y = -U\(L\((A*x-b)/t+A*(s-c))); % 固定 x,s, 更新 y
s = max(c-A'*y-x/t,0); % 固定 y,x, 更新 s
x = x + (A'*y+s-c)*t; % 固定 y,s, 更新 x
err = norm(x-x_old);
x_old = x;
end
end
测试:
% 生成数据
n = 100;
m = 20;
A = rand(m,n);
xs = full(abs(sprandn(n,1,m/n)));
b = A*xs;
y = randn(m,1);
s = rand(n,1).*(xs==0);
c = A'*y + s;
% 计算误差
errfun = @(x1, x2) norm(x1-x2)/(1+norm(x1));
% 标准答案
figure(1);
subplot(2,1,1);
stem(xs,'fill','k-.')
title('exact solu');
% ADMM 求解
opts = [];
tic;
[x1, out] = LP_ADMM_dual(c, A, b, opts, x0);
t1 = toc;
subplot(2,1,2);
stem(x1,'fill','k-.');
title('lp_admm_dual');
fprintf('lp-alm-dual: cpu: %5.2f, err-to-exact: %3.2e\n', t2, errfun(x1, xs));
lp-admm-dual: cpu: 0.08, err-to-exact: 1.17e-04
又快又准!!!