串口及串口通信硬件详解UART,I2C,SPI,USB

时间:2024-04-10 09:53:21

1.计算机与计算机或计算机与终端之间的数据传送串行通讯和并行通讯二种方式

1.1、串行通信 和 并行通信

并行通讯通常可以一次传送8bit、16bit、32bit甚至更高的位数,相应地就需要8根、16根、32根信号线,同时需要加入更多的信号地线。传输速度快,距离近;

串行通讯的数据线比较少,这样一条信息的各位数据被逐位按顺序传送。串行通讯的特点是:数据位传送,传按位顺序进行,最少只需一根传输线即可完成,成本低但送速度慢

1.2、串行通讯根据信息的传送方向可分为单工、半双工和全双工三种

信息只能单向传送为单工;
信息能双向传送但不能同时双向传送称为半双工;
信息能够同时双向传送则称为全双工。

1.3、串行通信根据是否有时钟线进行同步又分为 同步通信、异步通信

同步通信:是一种比特同步通信技术,要求发收双方具有同频同相的同步时钟信号,只需在传送报文的最前面附加特定的同步字符,使发收双方建立同步,此后便在同步时钟的控制下逐位发送/接收。
异步通信:在发送字符时,所发送的字符之间的时隙可以是任意的。但是接收端必须时刻做好接收的准备(如果接收端主机的电源都没有加上,那么发送端发送字符就没有意义,因为接收端根本无法接收)。发送端可以在任意时刻开始发送字符,因此必须在每一个字符的开始和结束的地方加上标志,即加上开始位和停止位,以便使接收端能够正确地将每一个字符接收下来。

2.串口

有常见的UART口(Universal Asynchronous Receiver Transmitter:通用异步收发器, 一对一,以位为单位发送)和COM( cluster communication port :串行通讯端口口),嵌入式里面说的串口,一般是指UART口。UART口和COM口是指的物理接口形式(硬件),而TTL、RS-232、RS-485是指的电平标准(电信号)。

2.1电平标准

TTL电平:输出低电平要小于0.8V,高电平要大于2.4V;输入低于1.2V就认为是0,高于2.0就认为是1;
RS232电平:逻辑1的电平为-3~-15V,逻辑0的电平为+3~+15V,介于-3~+3V之间的电压无意义;
RS485电平:差分信号-2500mv~-200mv为逻辑0;差分信号+2500mv~+200mv为逻辑1;-200mv~+200mv为高阻状态
详解RS232 RS485 RS422
MAX232芯片是 TTL电平与RS232电平的专用双向转换芯片,可以TTL转RS-232,也可以RS-232转TTL;
串口及串口通信硬件详解UART,I2C,SPI,USB
RS-232的9针实图串口及串口通信硬件详解UART,I2C,SPI,USB

一般只用这三根线就可以实现简单通信串口及串口通信硬件详解UART,I2C,SPI,USB

2.2时序图

串口及串口通信硬件详解UART,I2C,SPI,USB
串口及串口通信硬件详解UART,I2C,SPI,USB
起始位是一个值为0的位,所以对于正逻辑的TTL电平,起始位是一位时间的低电平;停止位是值为1的位,所以对于正逻辑的TTL电平,停止位是高电平。线路路空闲或者数据传输结束,对于正逻辑的TTL电平,线路总是1。对于负逻辑(如RS-232电平)则相反。例如,对于16进制数据55aaH,当采用8位数据位、1位停止位传输时,它在信号线上的波形如图1(TTL电平)和图2(RS-232电平)所示。 (先传第一个字节55,再传第二个字节aa,每个字节都是从低位向高位逐位传输)
转至

3.一些其他的接口:

SPI(Serial Peripheral Interface:串行外设接口);
I2C(INTER IC BUS:意为IC之间总线),一(host)对多,以字节为单位发送。

以下转至链接:https://www.jianshu.com/p/df2ed057b4a0

3.1 I2C

I2C总线是由Philips公司开发的一种简单、双向二线制同步串行总线。它只需要两根线即可在连接于总线上的器件之间传送信息。
主器件用于启动总线传送数据,并产生时钟以开放传送的器件,此时任何被寻址的器件均被认为是从器件.在总线上主和从、发和收的关系不是恒定的,而取决于此时数据传送方向。如果主机要发送数据给从器件,则主机首先寻址从器件,然后主动发送数据至从器件,最后由主机终止数据传送;如果主机要接收从器件的数据,首先由主器件寻址从器件.然后主机接收从器件发送的数据,最后由主机终止接收过程。在这种情况下.主机负责产生定时时钟和终止数据传送。

3.1.1接口

SCL - 串行时钟线
SDA - 串行数据线接口

SDA(串行数据线)和SCL(串行时钟线)都是双向I/O线,接口电路为开漏输出.需通过上拉电阻接电源VCC.当总线空闲时.两根线都是高电平,连接总线的外同器件都是CMOS器件,输出级也是开漏电路.在总线上消耗的电流很小,因此,总线上扩展的器件数量主要由电容负载来决定,因为每个器件的总线接口都有一定的等效电容.而线路中电容会影响总线传输速度.当电容过大时,有可能造成传输错误.所以,其负载能力为400pF,因此可以估算出总线允许长度和所接器件数量。
主器件用于启动总线传送数据,并产生时钟以开放传送的器件,此时任何被寻址的器件均被认为是从器件.在总线上主和从、发和收的关系不是恒定的,而取决于此时数据传送方向。如果主机要发送数据给从器件,则主机首先寻址从器件,然后主动发送数据至从器件,最后由主机终止数据传送;如果主机要接收从器件的数据,首先由主器件寻址从器件.然后主机接收从器件发送的数据,最后由主机终止接收过程。在这种情况下.主机负责产生定时时钟和终止数据传送。

3.1.2 时序

串口及串口通信硬件详解UART,I2C,SPI,USB
1.空闲状态
 I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。此时各个器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉高。

2.起始位与停止位的定义:
起始信号:当SCL为高期间,SDA由高到低的跳变;启动信号是一种电平跳变时序信号,而不是一个电平信号。
停止信号:当SCL为高期间,SDA由低到高的跳变;停止信号也是一种电平跳变时序信号,而不是一个电平信号。

3.数据的有效性:
I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。

4.ACK/NACK
  发送器每发送一个字节,就在时钟脉冲9期间释放数据线,由接收器反馈一个应答信号。 应答信号为低电平时,规定为有效应答位(ACK简称应答位),表示接收器已经成功地接收了该字节;应答信号为高电平时,规定为非应答位(NACK),一般表示接收器接收该字节没有成功。 对于反馈有效应答位ACK的要求是,接收器在第9个时钟脉冲之前的低电平期间将SDA线拉低,并且确保在该时钟的高电平期间为稳定的低电平。 如果接收器是主控器,则在它收到最后一个字节后,发送一个NACK信号,以通知被控发送器结束数据发送,并释放SDA线,以便主控接收器发送一个停止信号P。

3.3.3 特点

I2C总线特点可以概括如下:

在硬件上,I2C总线只需要一根数据线和一根时钟线两根线,总线接口已经集成在芯片内部,不需要特殊的接口电路,而且片上接口电路的滤波器可以滤去总线数据上的毛刺.因此I2C总线简化了硬件电路PCB布线,降低了系统成本,提高了系统可靠性。因为I2C芯片除了这两根线和少量中断线,与系统再没有连接的线,用户常用IC可以很容易形成标准化和模块化,便于重复利用。
I2C总线是一个真正的多主机总线,如果两个或多个主机同时初始化数据传输,可以通过冲突检测和仲裁防止数据破坏,每个连接到总线上的器件都有唯一的地址,任何器件既可以作为主机也可以作为从机,但同一时刻只允许有一个主机。数据传输和地址设定由软件设定,非常灵活。总线上的器件增加和删除不影响其他器件正常工作。
I2C总线可以通过外部连线进行在线检测,便于系统故障诊断和调试,故障可以立即被寻址,软件也利于标准化和模块化,缩短开发时问。
连接到相同总线上的IC数量只受总线最大电容的限制,串行的8位双向数据传输位速率在标准模式下可达100Kbit/s,快速模式下可达400Kbit/s,高速模式下可达3.4Mbit/s。
总线具有极低的电流消耗.抗高噪声干扰,增加总线驱动器可以使总线电容扩大10倍,传输距离达到15m;兼容不同电压等级的器件,工作温度范围宽。

数据传输方式
字节格式
发送到SDA 线上的每个字节必须为8 位,每次传输可以发送的字节数量不受限制。每个字节后必须跟一个响应位。首先传输的是数据的最高位(MSB),如果从机要完成一些其他功能后(例如一个内部中断服务程序)才能接收或发送下一个完整的数据字节,可以使时钟线SCL 保持低电平,迫使主机进入等待状态,当从机准备好接收下一个数据字节并释放时钟线SCL 后数据传输继续。
应答响应
数据传输必须带响应,相关的响应时钟脉冲由主机产生。在响应的时钟脉冲期间发送器释放SDA 线(高)。
在响应的时钟脉冲期间,接收器必须将SDA 线拉低,使它在这个时钟脉冲的高电平期间保持稳定的低电平。
通常被寻址的接收器在接收到的每个字节后,除了用CBUS 地址开头的数据,必须产生一个响应。当从机不能响应从机地址时(例如它正在执行一些实时函数不能接收或发送),从机必须使数据线保持高电平,主机然后产生一个停止条件终止传输或者产生重复起始条件开始新的传输。
如果从机接收器响应了从机地址,但是在传输了一段时间后不能接收更多数据字节,主机必须再一次终止传输。这个情况用从机在第一个字节后没有产生响应来表示。从机使数据线保持高电平,主机产生一个停止或重复起始条件。
如果传输中有主机接收器,它必须通过在从机发出的最后一个字节时产生一个响应,向从机发送器通知数据结束。从机发送器必须释放数据线,允许主机产生一个停止或重复起始条件。
时钟同步
所有主机在SCL线上产生它们自己的时钟来传输I2C总线上的报文。数据只在时钟的高电平周期有效,因此需要一个确定的时钟进行逐位仲裁。
时钟同步通过线与连接I2C 接口到SCL 线来执行。这就是说SCL 线的高到低切换会使器件开始数它们的低电平周期,而且一旦器件的时钟变低电平,它会使SCL 线保持这种状态直到到达时钟的高电平。但是如果另一个时钟仍处于低电平周期,这个时钟的低到高切换不会改变SCL 线的状态。因此SCL 线被有最长低电平周期的器件保持低电平。此时低电平周期短的器件会进入高电平的等待状态。
当所有有关的器件数完了它们的低电平周期后,时钟线被释放并变成高电平。之后,器件时钟和SCL线的状态没有差别,而且所有器件会开始数它们的高电平周期。首先完成高电平周期的器件会再次将SCL线拉低。
这样产生的同步SCL 时钟的低电平周期由低电平时钟周期最长的器件决定,而高电平周期由高电平时钟周期最短的器件决定。
传输模式
快速模式
快速模式器件可以在400kbit/s 下接收和发送。最小要求是:它们可以和400kbit/s 传输同步,可以延长SCL 信号的低电平周期来减慢传输。快速模式器件都向下兼容,可以和标准模式器件在0~100kbit/s 的I2C 总线系统通讯。但是,由于标准模式器件不向上兼容,所以不能在快速模式I2C 总线系统中工作。快速模式I2C 总线规范与标准模式相比有以下特征:

最大位速率增加到400kbit/s;
调整了串行数据(SDA) 和串行时钟(SCL )信号的时序;
快速模式器件的输入有抑制毛刺的功能,SDA 和SCL输入有施密特触发器;
快速模式器件的输出缓冲器对SDA 和SCL 信号的下降沿有斜率控制功能;
如果快速模式器件的电源电压被关断,SDA 和SCL 的I/O 管脚必须悬空,不能阻塞总线;
连接到总线的外部上拉器件必须调整以适应快速模式I2C 总线更短的最大允许上升时间。对于负载最大是200pF 的总线,每条总线的上拉器件可以是一个电阻,对于负载在200pF~400pF 之间的总线,上拉器件可以是一个电流源(最大值3mA )或者是一个开关电阻电路。

高速模式
高速模式(Hs 模式)器件对I2C 总线的传输速度有巨大的突破。Hs 模式器件可以在高达3.4Mbit/s 的位速率下传输信息,而且保持完全向下兼容快速模式或标准模式(F/S 模式)器件,它们可以在一个速度混合的总线系统中双向通讯。
Hs 模式传输除了不执行仲裁和时钟同步外,与F/S 模式系统有相同的串行总线协议和数据格式。
高速模式下I2C 总线规范如下:

Hs 模式主机器件有一个SDAH 信号的开漏输出缓冲器和一个在SCLH 输出的开漏极下拉和电流源上拉电路。这个电流源电路缩短了SCLH 信号的上升时间,任何时候在Hs 模式,只有一个主机的电流源有效;
在多主机系统的Hs 模式中,不执行仲裁和时钟同步,以加速位处理能力。仲裁过程一般在前面用F/S 模式传输主机码后结束;
Hs 模式主机器件以高电平和低电平是1:2 的比率产生一个串行时钟信号。解除了建立和保持时间的时序要求;
可以选择Hs 模式器件有内建的电桥。在Hs 模式传输中,Hs 模式器件的高速数据(SDAH)和高速串行时钟(SCLH )线通过这个电桥与F/S 模式器件的SDA 和SCL 线分隔开来。减轻了SDAH 和SCLH 线的电容负载,使上升和下降时间更快;
Hs 模式从机器件与F/S 从机器件的唯一差别是它们工作的速度。Hs 模式从机在SCLH 和SDAH输出有开漏输出的缓冲器。SCLH 管脚可选的下拉晶体管可以用于拉长SCLH 信号的低电平,但只允许在Hs 模式传输的响应位后进行;
Hs 模式器件的输出可以抑制毛刺,而且SDAH 和SCLH 输出有一个施密特触发器;
Hs 模式器件的输出缓冲器对SDAH 和SCLH 信号的下降沿有斜率控制功能。

3.2 SPI

SPI接口的全称是"Serial Peripheral Interface",意为串行外围接口,是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM、FLASH、实时时钟、AD转换器,还有数字信号处理器和数字信号解码器之间。
SPI接口是在CPU和外围低速器件之间进行同步串行数据传输,在主器件的移位脉冲下,数据按位传输,高位在前,低位在后,为全双工通信,数据传输速度总体来说比I2C总线要快,速度可达到几Mbps。SPI总线只需四条线(如图所示)就可以完成MCU与各种外围器件的通讯:

3.2.1 接口

MOSI – 主器件数据输出,从器件数据输入
MISO – 主器件数据输入,从器件数据输出
SCLK –时钟信号,由主器件产生,最大为fPCLK/2,从模式频率最大为fCPU/2
NSS – 从器件使能信号,由主器件控制,有的IC会标注为CS(Chip select)
串口及串口通信硬件详解UART,I2C,SPI,USB
SPI通信采用主从模式(Master-Slave)架构,一般为一个Master和多个Slave的应用模式。SPI主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。

3.2.2 时序

串口及串口通信硬件详解UART,I2C,SPI,USB
SPI是[单主设备(single-master )]通信协议,这意味着总线中的只有一支中心设备能发起通信。当SPI主设备想读/写[从设备]时,它首先拉低[从设备]对应的SS线(SS是低电平有效),接着开始发送工作脉冲到时钟线上,在相应的脉冲时间上,[主设备]把信号发到MOSI实现“写”,同时可对MISO采样而实现“读”

在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从器件的系统中,每个从器件需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。
SPI接口在内部硬件实际上是两个简单的移位寄存器,传输的数据为8位,在主器件产生的从器件使能信号和移位脉冲下,按位传输,高位在前,低位在后。

3.2.3 优缺点

协议简单,相对数据速率高。
占用的Pin口较多
没有指定的流控制,没有应答机制确认是否接收到数据。

串口及串口通信硬件详解UART,I2C,SPI,USB