基于51单片机智能加湿器控制系统
(仿真+程序+原理图)
功能介绍
具体功能:
1.LCD1602实时显示湿度值(湿度范围10%-95%)和湿度阈值;
2.可以通过按键设置湿度阈值范围;
3.当湿度值小于阈值时,开启加湿(绿灯模拟);
4.液位用按键模拟3种状态:低(L)、正常(N)、高(H),并在液晶实时显示;
5.用3个指示灯模拟显示。低液位时黄灯亮,正常液位蓝灯亮,高液位是红灯亮;
6.当液位低于低液位时,蜂鸣器报警,停止加湿(如果在加湿);
演示视频:
基于51单片机智能加湿器控制系统
#include <reg52.h> // 头文件包含
#include <intrins.h>
#define uint unsigned int // 以后unsigned char就可以用uchar代替
#define uchar unsigned char // 以后unsigned int 就可以用uint 代替
#define STATUS_REG_W 0x06
#define STATUS_REG_R 0x07
#define RESET 0x1e
typedef union //定义共用同类型
{
unsigned int i;
float f;
}value;
sbit Buzzer_P = P1^0; // 蜂鸣器
sbit LcdRs_P = P1^2; // 1602液晶的RS管脚
sbit LcdRw_P = P1^3; // 1602液晶的RW管脚
sbit LcdEn_P = P1^4; // 1602液晶的EN管脚
sbit Sck_P = P2^0; // SHT11传感器的时钟管脚
sbit Data_P = P2^1; // SHT11传感器的数据管脚
uchar temp; // 保存温度
uchar humi; // 保存湿度
uchar AlarmTL=20; // 温度下限报警值
uchar AlarmTH=30; // 温度上限报警值
uchar AlarmHL=40; // 湿度下限报警值
uchar AlarmHH=80; // 湿度上限报警值
/*********************************************************/
// 毫秒级的延时函数,time是要延时的毫秒数
/*********************************************************/
void DelayMs(uint time)
{
uint i,j;
for(i=0;i<time;i++)
for(j=0;j<112;j++);
}
/*********************************************************/
// 1602液晶写命令函数,cmd就是要写入的命令
/*********************************************************/
void LcdWriteCmd(uchar cmd)
{
LcdRs_P = 0;
LcdRw_P = 0;
LcdEn_P = 0;
P0=cmd;
DelayMs(2);
LcdEn_P = 1;
DelayMs(2);
LcdEn_P = 0;
}
/*********************************************************/
// 1602液晶写数据函数,dat就是要写入的数据
/*********************************************************/
void LcdWriteData(uchar dat)
{
LcdRs_P = 1;
LcdRw_P = 0;
LcdEn_P = 0;
P0=dat;
DelayMs(2);
LcdEn_P = 1;
DelayMs(2);
LcdEn_P = 0;
}
/*********************************************************/
// 1602液晶初始化函数
/*********************************************************/
void LcdInit()
{
LcdWriteCmd(0x38); // 16*2显示,5*7点阵,8位数据口
LcdWriteCmd(0x0C); // 开显示,不显示光标
LcdWriteCmd(0x06); // 地址加1,当写入数据后光标右移
LcdWriteCmd(0x01); // 清屏
}
/*********************************************************/
// 液晶光标定位函数
/*********************************************************/
void LcdGotoXY(uchar line,uchar column)
{
// 第一行
if(line==0)
LcdWriteCmd(0x80+column);
// 第二行
if(line==1)
LcdWriteCmd(0x80+0x40+column);
}
/*********************************************************/
// 液晶输出字符串函数
/*********************************************************/
void LcdPrintStr(uchar *str)
{
while(*str!='\0') // 判断是否到字符串的尽头了
LcdWriteData(*str++);
}
/*********************************************************/
// 液晶输出数字
/*********************************************************/
void LcdPrintNum(uchar num)
{
LcdWriteData(num/10+48); // 十位
LcdWriteData(num%10+48); // 个位
}
/*********************************************************/
// 往SHT11写入一个字节
/*********************************************************/
char ShtWriteByte(uchar value)
{
uchar i,error=0;
for(i=128;i>0;i>>=1) // 高位为1,循环右移
{
if (i&value)
Data_P=1; // 和要发送的数相与,结果为发送的位
else
Data_P=0;
Sck_P=1;
_nop_(); // 延时3us
_nop_();
_nop_();
Sck_P=0;
}
Data_P=1; // 释放数据线
Sck_P=1;
error=Data_P; // 检查应答信号,确认通讯正常
_nop_();
_nop_();
_nop_();
Sck_P=0;
Data_P=1;
return error; // error=1 通讯错误
}
/*********************************************************/
// 从SHT11读出一个字节
/*********************************************************/
char ShtReadByte(uchar ack)
{
unsigned char i,val=0;
Data_P=1; // 释放数据线
for(i=0x80;i>0;i>>=1) // 高位为1,循环右移
{
Sck_P=1;
if(Data_P)
val=(val|i); // 读一位数据线的值
Sck_P=0;
}
Data_P=!ack; // 如果是校验,读取完后结束通讯
Sck_P=1;
_nop_(); // 延时3us
_nop_();
_nop_();
Sck_P=0;
_nop_();
_nop_();
_nop_();
Data_P=1; // 释放数据线
return val;
}
/*********************************************************/
// SHT11启动传输
/*********************************************************/
void ShtTransStart(void)
{
Data_P=1;
Sck_P=0;
_nop_();
Sck_P=1;
_nop_();
Data_P=0;
_nop_();
Sck_P=0;
_nop_();
_nop_();
_nop_();
Sck_P=1;
_nop_();
Data_P=1;
_nop_();
Sck_P=0;
}
/*********************************************************/
// SHT11连接复位
/*********************************************************/
void ShtConnectReset(void)
{
unsigned char i;
Data_P=1; //准备
Sck_P=0;
for(i=0;i<9;i++) //DATA保持高,SCK时钟触发9次,发送启动传输,通迅即复位
{
Sck_P=1;
Sck_P=0;
}
ShtTransStart(); //启动传输
}
/*********************************************************/
// SHT11温湿度检测
/*********************************************************/
char ShtMeasure(unsigned char *p_value, unsigned char *p_checksum, uchar mode)
{
unsigned error=0;
unsigned int i;
ShtTransStart(); // 启动传输
switch(mode) // 选择发送命令
{
case 1 : // 测量温度
error+=ShtWriteByte(0x03);
break;
case 2 : // 测量湿度
error+=ShtWriteByte(0x05);
break;
default:
break;
}
for(i=0;i<65535;i++)
if(Data_P==0)
break; // 等待测量结束
if(Data_P)
error+=1; // 如果长时间数据线没有拉低,说明测量错误
*(p_value) =ShtReadByte(1); // 读第一个字节,高字节 (MSB)
*(p_value+1)=ShtReadByte(1); // 读第二个字节,低字节 (LSB)
*p_checksum =ShtReadByte(0); // read CRC校验码
return error; // error=1 通讯错误
}
/*********************************************************/
// SHT11温湿度值标度变换及温度补偿
/*********************************************************/
void CalcSHT11(float *p_humidity ,float *p_temperature)
{
const float C1=-4.0; // 12位湿度精度 修正公式
const float C2=+0.0405; // 12位湿度精度 修正公式
const float C3=-0.0000028; // 12位湿度精度 修正公式
const float T1=+0.01; // 14位温度精度 5V条件 修正公式
const float T2=+0.00008; // 14位温度精度 5V条件 修正公式
float rh=*p_humidity; // rh: 12位 湿度
float t=*p_temperature; // t: 14位 温度
float rh_lin; // rh_lin: 湿度 linear值
float rh_true; // rh_true: 湿度 ture值
float t_C; // t_C : 温度 ℃
t_C=t*0.01 - 40; //补偿温度
rh_lin=C3*rh*rh + C2*rh + C1; //相对湿度非线性补偿
rh_true=(t_C-25)*(T1+T2*rh)+rh_lin; //相对湿度对于温度依赖性补偿
*p_temperature=t_C; //返回温度结果
*p_humidity=rh_true; //返回湿度结果
}
/*********************************************************/
// 温度校正
/*********************************************************/
uchar TempCorrect(int temp)
{
if(temp<0) temp=0;
if(temp>970) temp=970;
if(temp>235) temp=temp+10;
if(temp>555) temp=temp+10;
if(temp>875) temp=temp+10;
temp=(temp%1000)/10;
return temp;
}
/*********************************************************/
// 湿度校正
/*********************************************************/
uchar HumiCorrect(uint humi)
{
if(humi>999) humi=999;
if((humi>490)&&(humi<951)) humi=humi-10;
humi=(humi%1000)/10;
return humi;
}
/*********************************************************/
// 读取SHT11的温湿度数据
/*********************************************************/
void ReadShtData()
{
value humi_val,temp_val; // 定义两个共同体,一个用于湿度,一个用于温度
uchar error; // 用于检验是否出现错误
uchar checksum; // CRC
uint temp1,humi1; // 临时读取到的温湿度数据
error=0; //初始化error=0,即没有错误
error+=ShtMeasure((unsigned char*)&temp_val.i,&checksum,1); //温度测量
error+=ShtMeasure((unsigned char*)&humi_val.i,&checksum,2); //湿度测量
if(error!=0) //如果发生错误,系统复位
ShtConnectReset();
else
{
humi_val.f=(float)humi_val.i; //转换为浮点数
temp_val.f=(float)temp_val.i; //转换为浮点数
CalcSHT11(&humi_val.f,&temp_val.f); //修正相对湿度及温度
temp1=temp_val.f*10;
temp=TempCorrect(temp1);
humi1=humi_val.f*10-50;
humi=HumiCorrect(humi1);
}
}
sbit key1 =P3^2; //接口定义
sbit key2 =P3^3;
sbit yeweiG =P3^4;
sbit yeweiD =P3^5;
sbit led_red =P1^7;
sbit led_blu =P1^6;
sbit led_yel =P1^5;
sbit led_gre =P3^7;
sbit buzzer = P1^0;
unsigned char yeweiFlag = 'N';//液位标志
unsigned char setH= 40; //设置值
unsigned char later = 0; //延时
void CheckKey(void);
硬件设计
使用元器件:
单片机:AT89C51;
(注意:单片机是通用的,无论51还是52、无论stc还是at都一样,引脚功能都一样。程序也是一样的。)
设计资料
01 仿真图
本设计使用proteus7.8和proteus8.9两个版本设计,向下兼容,无需担心!具体如图!
正常状态
加湿
高液位
低液位
02 原理图
本系统原理图采用Altium Designer19设计,具体如图!
03 程序
本设计使用软件keil4和keil5两个版本编程设计,无需担心!具体如图!
04 设计资料
资料获取请关注同名公众号,全部资料包括仿真源文件 、程序(含注释)、AD原理图、功能说明等。具体内容如下,全网最全! !
资料获取请观看前面演示视频!
点赞分享一起学习成长。