最近在复习数据结构,涉及到堆栈的实现,通过类模板可以使堆栈的存储数据类型更为灵活,下面是堆栈的实现代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
#ifndef MYSTACK_H
#define MYSTACK_H
#include <iostream>
using namespace std;
template < typename T>
class MyStack
{
public :
MyStack( int size);
~MyStack();
bool stackEmpty(); //判空
bool stackFull(); //判满
void clearStack(); //清空
int stackLength(); //长度
bool push(T elem); //压栈
bool pop(T &elem); //出栈
bool stackTop(T &elem); //返回栈顶
void stackTranverse(); //遍历栈
private :
T *m_pStack; //栈指针
int m_iSize; //栈容量
int m_iTop; //栈顶
};
template < typename T>
MyStack<T>::MyStack( int size)
{
m_iSize = size;
m_pStack = new T[m_iSize];
m_iTop = 0;
}
template < typename T>
MyStack<T>::~MyStack()
{
delete m_pStack;
m_pStack = NULL;
}
template < typename T>
bool MyStack<T>::stackEmpty() { //判空
return m_iTop == 0 ? true : false ;
}
template < typename T>
bool MyStack<T>::stackFull() { //判满
return m_iTop == m_iSize ? true : false ;
}
template < typename T>
int MyStack<T>::stackLength() { //栈长度
return m_iTop;
}
template < typename T>
void MyStack<T>::clearStack() { //清空
m_iTop = 0;
}
template < typename T>
bool MyStack<T>::push(T elem) { //压栈
if (stackFull()) {
return false ;
}
else {
m_pStack[m_iTop++] = elem;
return true ;
}
}
template < typename T>
bool MyStack<T>::pop(T &elem) { //出栈
if (stackEmpty())
{
return false ;
}
else {
elem = m_pStack[--m_iTop];
return true ;
}
}
template < typename T>
bool MyStack<T>::stackTop(T &elem) { //返回栈顶元素
if (stackEmpty())
{
return false ;
}
else {
elem = m_pStack[m_iTop-1];
return true ;
}
}
template < typename T>
void MyStack<T>::stackTranverse() { //遍历栈
int i = 0;
for (i = 0; i < m_iTop; i++) {
cout << m_pStack[i];
}
}
#endif
|
其中需要注意的是类模板需要在每个函数之前写上模板定义template <typename T>,并且将类名写成MyStack<T>,函数中涉及到类的使用时用T代替即可。
接着我用一个坐标点类Coordinate来做测试:
在Coordinate类中利用函数重载运算符<<实现坐标点的打印
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
#include <ostream>
using namespace std;
class Coordinate
{
public :
friend ostream& operator<<(ostream &out, Coordinate &coor);
Coordinate( int x=0, int y=0)
{
m_iX = x;
m_iY = y;
}
~Coordinate()
{
}
private :
int m_iX;
int m_iY;
};
ostream& operator<<(ostream &out, Coordinate &coor) {
out << "(" << coor.m_iX << "," << coor.m_iX << ")" << endl;
return out;
}
|
下面是测试主函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
#include <iostream>
#include "MyStack.h"
#include "Coordinate.h"
using namespace std;
int main() {
MyStack<Coordinate> *pStack = new MyStack<Coordinate>(5);
pStack->push(Coordinate(3, 5)); //坐标点入栈
pStack->push(Coordinate(7, 5));
pStack->push(Coordinate(6, 5));
pStack->push(Coordinate(4, 5));
pStack->push(Coordinate(3, 5));
pStack->stackTranverse(); //遍历栈
Coordinate t;
pStack->pop(t); //出栈
cout << "弹出的t为:" << t ;
cout << "长度:" << pStack->stackLength();
pStack->clearStack(); //清空栈
pStack->stackTranverse();
//delete pStack;
//pStack = NULL;
system ( "pause" );
return 0;
}
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/theVicTory/article/details/70226025