Unity的性能优化CPU/GPU/内存

时间:2024-04-06 22:24:16

http://blog.sina.com.cn/s/blog_6cef69490102wxjb.html

CPU的方面的优化:

上文中说了,drawcall影响的是CPU的效率,而且也是最知名的一个优化点。但是除了drawcall之外,还有哪些因素也会影响到CPU的效率呢?让我们一一列出暂时能想得到的:

  • DrawCalls
  • 物理组件(Physics)
  • GC

(什么?GC不是处理内存问题的嘛?匹夫你不要骗我啊!不过,匹夫也要提醒一句,GC是用来处理内存的,但是是谁使用GC去处理内存的呢?)

  • 当然,还有代码质量

DrawCalls:

前面说过了,DrawCall是CPU调用底层图形接口。比如有上千个物体,每一个的渲染都需要去调用一次底层接口,而每一次的调用CPU都需要做很多工作,那么CPU必然不堪重负。但是对于GPU来说,图形处理的工作量是一样的。所以对DrawCall的优化,主要就是为了尽量解放CPU在调用图形接口上的开销。所以针对drawcall我们主要的思路就是每个物体尽量减少渲染次数,多个物体最好一起渲染。所以,按照这个思路就有了以下几个方案:

  1. 使用Draw Call Batching,也就是描绘调用批处理。Unity在运行时可以将一些物体进行合并,从而用一个描绘调用来渲染他们。具体下面会介绍。
  • 通过把纹理打包成图集来尽量减少材质的使用。
  • 尽量少的使用反光啦,阴影啦之类的,因为那会使物体多次渲染。

Draw Call Batching

首先我们要先理解为何2个没有使用相同材质的物体即使使用批处理,也无法实现Draw Call数量的下降和性能上的提升。

因为被“批处理”的2个物体的网格模型需要使用相同材质的目的,在于其纹理是相同的,这样才可以实现同时渲染的目的。因而保证材质相同,是为了保证被渲染的纹理相同。

因此,为了将2个纹理不同的材质合二为一,我们就需要进行上面列出的第二步,将纹理打包成图集。具体到合二为一这种情况,就是将2个纹理合成一个纹理。这样我们就可以只用一个材质来代替之前的2个材质了。

而Draw Call Batching本身,也还会细分为2种。

Static Batching 静态批处理

看名字,猜使用的情景。

静态?那就是不动的咯。还有呢?额,听上去状态也不会改变,没有“生命”,比如山山石石,楼房校舍啥的。那和什么比较类似呢?嗯,聪明的各位一定觉得和场景的属性很像吧!所以我们的场景似乎就可以采用这种方式来减少draw call了。

那么写个定义:只要这些物体不移动,并且拥有相同的材质,静态批处理就允许引擎对任意大小的几何物体进行批处理操作来降低描绘调用。

那要如何使用静态批来减少Draw Call呢?你只需要明确指出哪些物体是静止的,并且在游戏中永远不会移动、旋转和缩放。想完成这一步,你只需要在检测器(Inspector)中将Static复选框打勾即可,如下图所示:

Unity的性能优化CPU/GPU/内存

至于效果如何呢?

举个例子:新建4个物体,分别是Cube,Sphere, Capsule, Cylinder,它们有不同的网格模型,但是也有相同的材质(Default-Diffuse)。

Unity的性能优化CPU/GPU/内存

首先,我们不指定它们是static的。Draw Call的次数是4次,如图:

Unity的性能优化CPU/GPU/内存

我们现在将它们4个物体都设为static,在来运行一下:

如图,Draw Call的次数变成了1,而Saved by batching的次数变成了3。

静态批处理的好处很多,其中之一就是与下面要说的动态批处理相比,约束要少很多。所以一般推荐的是draw call的静态批处理来减少draw call的次数。那么接下来,我们就继续聊聊draw call的动态批处理。

Dynamic Batching 动态批处理

有阴就有阳,有静就有动,所以聊完了静态批处理,肯定跟着就要说说动态批处理了。首先要明确一点,Unity3D的draw call动态批处理机制是引擎自动进行的,无需像静态批处理那样手动设置static。我们举一个动态实例化prefab的例子,如果动态物体共享相同的材质,则引擎会自动对draw call优化,也就是使用批处理。首先,我们将一个cube做成prefab,然后再实例化500次,看看draw call的数量。

for

(int i = 0; i < 500; i++) { 

 GameObject cube; cube = GameObject.Instantiate(prefab) as GameObject; 

}

Unity的性能优化CPU/GPU/内存

draw call的数量:

可以看到draw call的数量为1,而 saved by batching的数量是499。而这个过程中,我们除了实例化创建物体之外什么都没做。不错,unity3d引擎为我们自动处理了这种情况。

但是有很多童靴也遇到这种情况,就是我也是从prefab实例化创建的物体,为何我的draw call依然很高呢?这就是匹夫上文说的,draw call的动态批处理存在着很多约束。下面匹夫就演示一下,针对cube这样一个简单的物体的创建,如果稍有不慎就会造成draw call飞涨的情况吧。

我们同样是创建500个物体,不同的是其中的100个物体,每个物体的大小都不同,也就是Scale不同。

for

(int i = 0; i < 500; i++) { GameObject cube; cube = GameObject.Instantiate(prefab) as GameObject; if(i / 100 == 0) { cube.transform.localScale = new Vector3(2 + i, 2 + i, 2 + i); } }

draw call的数量:

我们看到draw call的数量上升到了101次,而saved by batching的数量也下降到了399。各位看官可以看到,仅仅是一个简单的cube的创建,如果scale不同,竟然也不会去做批处理优化。这仅仅是动态批处理机制的一种约束,那我们总结一下动态批处理的约束,各位也许也能从中找到为何动态批处理在自己的项目中不起作用的原因:

  1. 批处理动态物体需要在每个顶点上进行一定的开销,所以动态批处理仅支持小于900顶点的网格物体。
  • 如果你的着色器使用顶点位置,法线和UV值三种属性,那么你只能批处理300顶点以下的物体;如果你的着色器需要使用顶点位置,法线,UV0,UV1和切向量,那你只能批处理180顶点以下的物体。 
  • 不要使用缩放。分别拥有缩放大小(1,1,1) 和(2,2,2)的两个物体将不会进行批处理。 
  • 统一缩放的物体不会与非统一缩放的物体进行批处理。
  • 使用缩放尺度(1,1,1) 和 (1,2,1)的两个物体将不会进行批处理,但是使用缩放尺度(1,2,1) 和(1,3,1)的两个物体将可以进行批处理。 
  • 使用不同材质的实例化物体(instance)将会导致批处理失败。 
  • 拥有lightmap的物体含有额外(隐藏)的材质属性,比如:lightmap的偏移和缩放系数等。所以,拥有lightmap的物体将不会进行批处理(除非他们指向lightmap的同一部分)。 
  • 多通道的shader会妨碍批处理操作。比如,几乎unity中所有的着色器在前向渲染中都支持多个光源,并为它们有效地开辟多个通道。 
  • 预设体的实例会自动地使用相同的网格模型和材质

所以,尽量使用静态的批处理。

物理组件

曾几何时,匹夫在做一个策略类游戏的时候需要在单元格上排兵布阵,而要侦测到哪个兵站在哪个格子匹夫选择使用了射线,由于士兵单位很多,而且为了精确每一帧都会执行检测,那时候CPU的负担叫一个惨不忍睹。后来匹夫果断放弃了这种做法,并且对物理组件产生了心理的阴影。

这里匹夫只提2点匹夫感觉比较重要的优化措施:

1.设置一个合适的Fixed Timestep。设置的位置如图:

Unity的性能优化CPU/GPU/内存

 

那何谓“合适”呢?首先我们要搞明白Fixed Timestep和物理组件的关系。物理组件,或者说游戏中模拟各种物理效果的组件,最重要的是什么呢?计算啊。对,需要通过计算才能将真实的物理效果展现在虚拟的游戏中。那么Fixed Timestep这货就是和物理计算有关的啦。所以,若计算的频率太高,自然会影响到CPU的开销。同时,若计算频率达不到游戏设计时的要求,有会影响到功能的实现,所以如何抉择需要各位具体分析,选择一个合适的值。

2.就是不要使用网格碰撞器(mesh collider):为啥?因为实在是太复杂了。网格碰撞器利用一个网格资源并在其上构建碰撞器。对于复杂网状模型上的碰撞检测,它要比应用原型碰撞器精确的多。标记为凸起的(Convex )的网格碰撞器才能够和其他网格碰撞器发生碰撞。各位上网搜一下mesh collider的图片,自然就会明白了。我们的手机游戏自然无需这种性价比不高的东西。

当然,从性能优化的角度考虑,物理组件能少用还是少用为好。

处理内存,却让CPU受伤的GC

在CPU的部分聊GC,感觉是不是怪怪的?其实小匹夫不这么觉得,虽然GC是用来处理内存的,但的确增加的是CPU的开销。因此它的确能达到释放内存的效果,但代价更加沉重,会加重CPU的负担,因此对于GC的优化目标就是尽量少的触发GC。

首先我们要明确所谓的GC是Mono运行时的机制,而非Unity3D游戏引擎的机制,所以GC也主要是针对Mono的对象来说的,而它管理的也是Mono的托管堆。 搞清楚这一点,你也就明白了GC不是用来处理引擎的assets(纹理啦,音效啦等等)的内存释放的,因为U3D引擎也有自己的内存堆而不是和Mono一起使用所谓的托管堆。

其次我们要搞清楚什么东西会被分配到托管堆上?不错咯,就是引用类型咯。比如类的实例,字符串,数组等等。而作为int,float,包括结构体struct其实都是值类型,它们会被分配在堆栈上而非堆上。所以我们关注的对象无外乎就是类实例,字符串,数组这些了。

那么GC什么时候会触发呢?两种情况:

  1. 首先当然是我们的堆的内存不足时,会自动调用GC。
  • 其次呢,作为编程人员,我们自己也可以手动的调用GC。

所以为了达到优化CPU的目的,我们就不能频繁的触发GC。而上文也说了GC处理的是托管堆,而不是Unity3D引擎的那些资源,所以GC的优化说白了也就是代码的优化。那么匹夫觉得有以下几点是需要注意的:

  1. 字符串连接的处理。因为将两个字符串连接的过程,其实是生成一个新的字符串的过程。而之前的旧的字符串自然而然就成为了垃圾。而作为引用类型的字符串,其空间是在堆上分配的,被弃置的旧的字符串的空间会被GC当做垃圾回收。
  • 尽量不要使用foreach,而是使用for。foreach其实会涉及到迭代器的使用,而据传说每一次循环所产生的迭代器会带来24 Bytes

的垃圾。那么循环10次就是240Bytes。

  • 不要直接访问gameobject的tag属性。比如if (go.tag == “human”)最好换成if (go.CompareTag (“human”))。因为访问物体的tag属性会在堆上额外的分配空间。如果在循环中这么处理,留下的垃圾就可想而知了。
  • 使用“池”,以实现空间的重复利用。
  • 最好不用LINQ的命令,因为它们会分配临时的空间,同样也是GC收集的目标。而且我很讨厌LINQ的一点就是它有可能在某些情况下无法很好的进行AOT编译。比如“OrderBy”会生成内部的泛型类“OrderedEnumerable”。这在AOT编译时是无法进行的,因为它只是在OrderBy的方法中才使用。所以如果你使用了OrderBy,那么在IOS平台上也许会报错。

代码?脚本?

聊到代码这个话题,也许有人会觉得匹夫多此一举。因为代码质量因人而异,很难像上面提到的几点,有一个明确的评判标准。也是,公写公有理,婆写婆有理。但是匹夫这里要提到的所谓代码质量是基于一个前提的:Unity3D是用C++写的,而我们的代码是用C#作为脚本来写的,那么问题就来了~脚本和底层的交互开销是否需要考虑呢?也就是说,我们用Unity3D写游戏的“游戏脚本语言”,也就是C#是由mono运行时托管的。而功能是底层引擎的C++实现的,“游戏脚本”中的功能实现都离不开对底层代码的调用。那么这部分的开销,我们应该如何优化呢?

  1. 以物体的Transform组件为例,我们应该只访问一次,之后就将它的引用保留,而非每次使用都去访问。这里有人做过一个小实验,就是对比通过方法GetComponent()获取Transform组件, 通过MonoBehavor的transform属性去取,以及保留引用之后再去访问所需要的时间:
    • GetComponent = 619ms
  • Monobehaviour = 60ms
  • CachedMB = 8ms
  • Manual Cache = 3ms

   2.如上所述,最好不要频繁使用GetComponent,尤其是在循环中。

   3.善于使用OnBecameVisible()和OnBecameVisible

(),来控制物体的update()函数的执行以减少开销。

   4.使用内建的数组,比如用Vector3.zero而不是new Vector(0, 0, 0);

   5.对于方法的参数的优化:善于使用ref关键字。值类型的参数,是通过将实参的值复制

到形参,来实现按值传递到方法,也就是我们通常说的按值传递。复制嘛,总会让人感觉很笨重。比如Matrix4x4这样比较复杂的值类型,如果直接复制一份新的,反而不如将值类型的引用传递给方法作为参数。

好啦,CPU的部分匹夫觉得到此就介绍的差不多了。下面就简单聊聊其实匹夫并不是十分熟悉的部分,GPU的优化。