串口通信相关知识总结及STM32串口通信原理

时间:2024-04-06 19:38:05

串口相关知识总结

一:处理器与外部设备通信的两种方式
1:并行通信:数据各个位同时传输,传输速度快,但是占用引脚资源较多
2:串行通信:数据按位顺序传输,占用引脚资源较少,传输速度较慢
二:数据传输方向
1:单工模式(Simplex Communication)的数据传输是单向的。通信双方中,一方固定为发送端,一方则固定为接收端。信息只能沿一个方向传输,使用一根传输线。
2:半双工模式(Half Duplex)通信使用同一根传输线,既可以发送数据又可以接收数据,但不能同时进行发送和接收。数据传输允许数据在两个方向上传输,但是,在任何时刻只能由其中的一方发送数据,另一方接收数据。因此半双工模式既可以使用一条数据线,也可以使用两条数据线。半双工通信中每端需有一个收发切换电子开关,通过切换来决定数据向哪个方向传输。因为有切换,所以会产生时间延迟,信息传输效率低些。
3:全双工模式(Full Duplex)通信允许数据同时在两个方向上传输。因此,全双工通信是两个单工通信方式的结合,它要求发送设备和接收设备都有独立的接收和发送能力。在全双工模式中,每一端都有发送器和接收器,有两条传输线,信息传输效率高。
三:串行通信的通信方式
1:同步通信:带时钟同步信号传输:SPI,IIC通信接口。
在同步通讯中,收发设备上方会使用一根信号线传输信号,在时钟信号的驱动下双方进行协调,同步数据。例如,通讯中通常双方会统一规定在时钟信号的上升沿或者下降沿对数据线进行采样。
2:异步通信:不带时钟同步信号:UART(通用异步收发器),单总线,没有时钟信号。
在异步通讯中不使用时钟信号进行数据同步,它们直接在数据信号中穿插一些用于同步的信号位,或者将主题数据进行打包,以数据帧的格式传输数据。通讯中还需要双方规约好数据的传输速率(也就是波特率)等,以便更好地同步。常用的波特率有4800bps、9600bps、115200bps等。
在同步通讯中,数据信号所传输的内容绝大部分是有效数据,而异步通讯中会则会包含数据帧的各种标识符,所以同步通讯效率高,但是同步通讯双方的时钟允许误差小,稍稍时钟出错就可能导致数据错乱,异步通讯双方的时钟允许误差较大

常见的串行通信接口:

通信标准 引脚说明 通信方式 通信方向
UART(通用异步收发器) TXD:发送端 RXD:接收端GND:公共端 异步通信 全双工
SPI SCK:同步时钟; MISO:主机输入,从机输出 ;MOSI:主机输出,从机输入 同步通信 全双工
IIC SCL:同步时钟;SDA:数据输入/输出端 同步通信 半双工

四:TTL、RS232、RS485不同的电平标准
转载于https://blog.csdn.net/wb790238030/article/details/83502823
1:TTL指双极型三极管逻辑电路,市面上很多“USB转TTL”模块,实际上是“USB转TTL电平的串口”模块。这种信号0对应0V,1对应3.3V或者5V。与单片机、SOC的IO电平兼容。不过实际也不一定是TTL电平,因为现在大部分数字逻辑都是CMOS工艺做的,只是沿用了TTL的说法。我们进行串口通信的时候 从单片机直接出来的基本是都 是 TTL 电平。
TTL电平:全双工(逻辑1: 2.4V–5V 逻辑0: 0V–0.5V)
硬件框图如下,TTL用于两个MCU间通信
串口通信相关知识总结及STM32串口通信原理 ‘0’和‘1’表示

串口通信相关知识总结及STM32串口通信原理
2:RS232是电子工业协会(Electronic Industries Association,EIA) 制定的异步传输标准接口,同时对应着电平标准和通信协议(时序),其电平标准:+3V~+15V对应0,-3V~-15V对应1。rs232 的逻辑电平和TTL 不一样但是协议一样。
缺点:
(1)接口信号电平值较高,接口电路芯片容易损坏。
(2)传输速率低,最高波特率19200bps。
(3)抗干扰能力较差。
(4)传输距离有限,一般在15m以内。
(5)只能实现点对点的通讯方式。
RS-232电平:全双工(逻辑1:-15V–5V 逻辑0:+3V–+15V)
硬件框图如下,TTL用于MCU与PC机之间通信
串口通信相关知识总结及STM32串口通信原理‘0’和‘1’表示
串口通信相关知识总结及STM32串口通信原理
3:RS485是一种串口接口标准,为了长距离传输采用差分方式传输,传输的是差分信号,抗干扰能力比RS232强很多。两线压差为-(26)V表示0,两线压差为+(26)V表示1
RS-485:半双工、(逻辑1:+2V–+6V 逻辑0: -6V—2V)这里的电平指AB 两线间的电压差。
特点:
(1)RS485采用平衡发送和差分接收,具有良好的抗干扰能力,信号能传输上千米。
(2)RS485有两线制和四线制两种接线。采用四线制时,只能实现点对多的通讯(即只能有一个主设备,其余为从设备)。四线制现在很少采用,现在多采用两线制接线方式。
(3)两线制RS485只能以半双式方式工作,收发不能同时进行。
(4)RS485在同一总线上最多可以接32个结点,可实现真正的多点通讯,但一般采用的是主从通信方式,即一个主机带多个从机。
(5)因RS485接口具有良好的抗干扰能力,长的传输距离和多站能力等优点使其成为首选的串行接口。
硬件框图如下

串口通信相关知识总结及STM32串口通信原理
‘0’和‘1’表示
串口通信相关知识总结及STM32串口通信原理
五:串口通信的重要参数:
串口通讯的数据包由发送设备通过自身的TXD接口传输到接收设备的RXD接口,通讯双方的数据包格式要规约一致才能正常收发数据。STM32中串口异步通信需要定义的参数:起始位、数据位(8位或者9位)、奇偶校验位(第9位)、停止位(1,1.5,2位)、波特率设置。
a,波特率:这是一个衡量符号传输速率的参数。指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数,如每秒钟传送240个字符,而每个字符格式包含10位(1个起始位,1个停止位,8个数据位),这时的波特率为240Bd,比特率为10位*240个/秒=2400bps。
波特率就是每秒钟传输的数据位数。波特率的单位是每秒比特数(bps),常用的单位还有:每秒千比特数Kbps,每秒兆比特数Mbps。串口典型的传输波特率600bps,1200bps,2400bps,4800bps,9600bps,19200bps,38400bps。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。
b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据往往不会是8位的,标准的值是6、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准 ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。
c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。
d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇校验,校验位为1,这样就有3个逻辑高位。高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。

六:STM32的UART特点
转载于https://blog.csdn.net/wb790238030/article/details/83502823
全双工异步通信;
分数波特率发生器系统,提供精确的波特率。发送和接受共用的可编程波特率,最高可达4.5Mbits/s;
可编程的数据字长度(8位或者9位);
可配置的停止位(支持1或者2位停止位);
可配置的使用DMA多缓冲器通信;
单独的发送器和接收器使能位;
检测标志:① 接受缓冲器 ②发送缓冲器空 ③传输结束标志;
多个带标志的中断源,触发中断;
其他:校验控制,四个错误检测标志。
串口通信过程:
串口通信相关知识总结及STM32串口通信原理UART串口通信的数据包以帧为单位,常用的帧结构为:1位起始位+8位数据位+1位奇偶校验位(可选)+1位停止位。如下图所示:
串口通信相关知识总结及STM32串口通信原理奇偶校验位分为奇校验和偶校验两种,是一种简单的数据误码校验方法。奇校验是指每帧数据中,包括数据位和奇偶校验位的全部9个位中1的个数必须为奇数;偶校验是指每帧数据中,包括数据位和奇偶校验位的全部9个位中1的个数必须为偶数。
校验方法除了奇校验(odd)、偶校验(even)之外,还可以有:0 校验(space)、1 校验(mark)以及无校验(noparity)。 0/1校验:不管有效数据中的内容是什么,校验位总为0或者1。

STM32F4-UART(USART)框图
串口通信相关知识总结及STM32串口通信原理这个框图分成上、中、下三个部分。本文大概地讲述一下各个部分的内容,具体的可以看《STM32中文参考手册》中的描述。
框图的上部分,数据从RX进入到接收移位寄存器,后进入到接收数据寄存器,最终供CPU或者DMA来进行读取;数据从CPU或者DMA传递过来,进入发送数据寄存器,后进入发送移位寄存器,最终通过TX发送出去。
然而,UART的发送和接收都需要波特率来进行控制的,波特率是怎样控制的呢?

这就到了框图的下部分,在接收移位寄存器、发送移位寄存器都还有一个进入的箭头,分别连接到接收器控制、发送器控制。而这两者连接的又是接收器时钟、发送器时钟。也就是说,异步通信尽管没有时钟同步信号,但是在串口内部,是提供了时钟信号来进行控制的。而接收器时钟和发送器时钟有是由什么控制的呢?
可以看到,接收器时钟和发送器时钟又被连接到同一个控制单元,也就是说它们共用一个波特率发生器。同时也可以看到接收器时钟(发生器时钟)的计算方法、USRRTDIV的计算方法。
这里需要知道一个知识点:
UART1的时钟:PCLK2(高速);
UART2、UART3、UART4的时钟:PCLK1(低速)。
STM32波特率计算方法:
串口通信相关知识总结及STM32串口通信原理后面STM32串口寄存器等部分请查看STM32F4xx中文参考手册