ollama + langchain + FAISS 向量数据库,给定知识上下文的问答
from langchain_core.output_parsers import StrOutputParser
from langchain_community.llms import Ollama
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
# 从url导入知识作为聊天背景上下文
loader = WebBaseLoader("https://docs.smith.langchain.com/user_guide")
#加载
docs = loader.load()
# 文本分词器
text_splitter = RecursiveCharacterTextSplitter()
documents = text_splitter.split_documents(docs)
# ollama嵌入层
embeddings = OllamaEmbeddings()
# 文档向量化
vector = FAISS.from_documents(documents, embeddings)
# 创建ollama 模型 llama2
llm = Ollama(model="llama2")
output_parser = StrOutputParser()
# 创建提示词模版
prompt = ChatPromptTemplate.from_template(
"""Answer the following question based only on the provided context:
<context>
{context}
</context>
Question: {input}"""
)
# 生成chain : prompt | llm
document_chain = create_stuff_documents_chain(llm, prompt)
# 向量数据库检索器
retriever = vector.as_retriever()
#向量数据库检索chain : vector | prompt | llm
retrieval_chain = create_retrieval_chain(retriever, document_chain)
# 调用上面的 (向量数据库检索chain)
response = retrieval_chain.invoke({"input": "how can langsmith help with testing?"})
# 打印结果
print(response["answer"])