Vulkan 多线程渲染

时间:2024-04-04 14:04:15

1. Overview of Vulkan

1.1 计算机图形软件

图形软件有两个大类:专用软件包(special-purpose packages)和通用编程软件包(general program-
ming packages)。

专用软件包通常提供一种UI设计语言,让用户直接生成想要的图形,不用关心内部实现。这类软件例子是PS、CAD等等。

相反,通用编程软件包提供一个可使用C、C++或Java等高级语言编程的图形函数库。图形函数库中提供几何图元、矩阵变换等操作,提供了间接操作硬件的软件接口,所以这组图形函数又被称为计算机图形应用编程接口(computer-graphics application programming interface,CG API)。OpenGL、Vulkan、DirectX、Metal皆在此列。

1.2 Vulkan多线程的设计理念

Vulkan不仅仅是图形(graphics)API,而是一个面向图形和计算的编程接口(graphics and compute)。支持Vulkan的设备可以是GPU,也可以是DSP或者固定功能的硬件。

Vulkan中的计算模型主要基于并行计算,因此支持多线程Vulkan设计的核心理念之一。

为了较少Vulkan内部因为互斥同步等操作造成的卡顿问题,Vulkan内部默认认为对任何资源的访问不存在多线程竞争,所有的资源同步操作由应用开发者去负责,因为对资源的访问和使用没有人比应用开发者自己更加清楚。Vulkan称之为外部同步(external synchronization)。

因为这个原因,资源管理和线程同步工作成为编写Vulkan程序的最大难点之一。想要让Vulkan多线程正常运行,你需要做大量的工作。当然,换来的是Vulkan有了更加干净的线程模型以及比其它CG API高得多的性能。

Vulkan 多线程渲染

1.3. Instances, Devices, and Queues

在正式研究Vulkan多线程之前,有三个重要的基础概念需要了解—Instances, Devices, and Queues。

Instances可以看做是应用的子系统,从逻辑上把Vulkan与应用程序上下文中的其他逻辑隔开。Instances可以看做是Vulkan的上下文,它会跟踪所有状态,从逻辑上把所有支持Vulkan的设备整合在一起。

Devices有两个概念:Physical devices和Logical device。

Physical devices通常代表一个或者多个支持Vulkan的硬件设备,这些设备具有特定功能,可以提供一系列Queues。图形显卡、加速器、DSP等都可以是Vulkan的Physical devices。

Logical device是Physical devices的软件抽象,用于预订一些硬件资源。

Queues可以理解为一个“GPU线程”,它是实现Vulkan多线程的关键元素之一,用于响应应用的请求,大部分时间,应用都在与其交互。

Vulkan功能的层次结构图如下:

Vulkan 多线程渲染

2. Queues and Command Buffer

2.1 Queues

Queue代表一个GPU线程,Vulkan设备执行的就是提交到Queues中的工作。物理设备中Queue可能不止一个,每一个Queue都被包含在Queue Families中。

Queue Families是一个有相同功能的Queues的集合,它们的性能水平和对系统资源的访问是相同的,并且在它们之间数据传输工作没有任何成本(同步之外)。

一个物理设备中可以存在多个Queue Families,不同的Queue Families有不同的特性。相同Queue Families中的Queues的功能相同,并且可以并行运行。

按照Queue的能力,可以将其划分为:

  • Graphics(图形)
    • 该系列中的Queues支持图形操作,例如绘制点,线和三角形。
  • Compute(计算)
    • 该系列中的Queues支持诸如computer shader之类的计算操作。
  • Transfer(传输,拷贝)
    • 该系列中的Queues支持传输操作,例如复制缓冲区和图像内容。
  • Sparse binding(稀疏绑定)
    • 该系列中的队列支持用于更新稀疏资源(sparse resource)的内存绑定操作。

Vulkan 多线程渲染

2.2 Command Buffer

2.2.1 单线程的性能瓶颈

传统CG API是单线程的,性能的提升只能依赖于CPU主频的提高。能有的优化方案也不外乎主线程和渲染线程分开,或者某些资源的异步加载、离线处理。

Vulkan 多线程渲染

但是在实际应用中我们还是经常遇到传统CG API导致的性能瓶颈。

以手机终端为例,CPU主频提升有限,各大芯片厂商开始向多核多线程发展,考虑到功耗温控问题,又不能把CPU频率升的太高,越来越高的刷新率对实时渲染的速度要求越来越苛刻。

Vulkan 多线程渲染

Vulkan为了充分发挥CPU多核多线程的作用,引入了command buffer的概念。多个线程可以同时协作,每个CPU线程都可以往自己的command buffer中提交渲染命令,然后统一提交到对应的Queue中,大大提高了CPU的利用率。

Vulkan 多线程渲染

2.2.2 Command Buffer的作用

应用在绘制时会提交一系列绘制命令给GPU驱动,但是这些绘制命令不会立刻被执行,而是被简单的添加到Command Buffer的末尾。

在其他CG APIs中,驱动程序在应用不感知的情况下,把API调用翻译成GPU command并储存在command buffer中,最终提交给GPU处理。command buffer的创建和销毁都由驱动负责。

在Vulkan中,你需要自己从Command Buffer Pool中申请command buffer,将想要记录的命令放入command buffer中。

Command Buffer Pool:

Vulkan 多线程渲染

2.2.3 Recording command

Command Buffer可以记录(Record)很多命令,比如:设置状态、绘制操作、数据拷贝…

Vulkan 多线程渲染

Vulkan 多线程渲染

理论上,一个线程可以把Command记录到多个Command Buffer中,多个线程也可以共享同一个Command Buffer,但是一般不鼓励多个线程共享一个Command Buffer。

Vulkan的关键设计原则之一就是做到高效的多线程。想实现这一点,应用程序要注意因为资源竞争导致的多线程彼此阻塞。因此,每个线程最好有一个或者对个Command Buffer,不要尝试共享一个。另外,Command Buffer由Command Buffer Pool分配,应用可以为每一个线程创建一个Command Buffer Pool,让各个工作线程从Command Buffer Pool中分配Command Buffer,无需参与竞争。

Vulkan 多线程渲染

2.2.4 Submitting Command Buffers

提交过程使用示意图更加好理解一点。

单线程Command Buffer提交过程

Vulkan 多线程渲染

Vulkan 多线程渲染

Vulkan 多线程渲染

多线程Command Buffer提交过程

Vulkan 多线程渲染

Vulkan 多线程渲染

整体流程如下

Vulkan 多线程渲染

3. Synchronization

3.1 显示同步操作

Vulkan把同步的操作交给了应用(external synchronization),绝大多数的Vulkan命令根本不提供同步,需要应用自己负责。Vulkan给应用提供了同步原语,帮助应用进行同步操作。

Vulkan中主要有四种同步原语(synchronization primitives):

  • Fences
    • 最大颗粒度的同步原语,目的是给CPU端提供一种方法,可以知道GPU或者其他Vulkan Device什么时候把提交的工作全部做完。
    • 如果你熟悉Android显示机制的话,acquire fence或者retire fence就是类似的作用
  • Semaphores
    • 颗粒度比Fences更小一点,通常用于不同Queue之间的数据同步操作
  • Events
    • 颗粒度更小,可以用于Command Buffer之间的同步工作
  • Barriers
    • Vulkan流水线(Pipeline)阶段内用于内存访问管理和资源状态移动的同步机制

下面这张图取自NVIDIA公司Vulkan 多线程讲解的PPT:

Vulkan 多线程渲染

3.2 隐藏的执行顺序

Vulkan是显式的API没错,号称是“没有秘密的API”。但是在多线程同步时,还是存在一些潜规则。

以下面这张图为例,同一个Queue中,Command Buffer1 和Command Buffer2 谁先执行?Command Buffer中记录的一堆命令是如何执行的?

Vulkan 多线程渲染

Vulkan的执行顺序其实是有一定的潜规则的,在没有同步原语的情况下:

  • Command Buffer中的Command,先记录的先执行
  • 先提交的Command Buffer先执行
  • 同一个Queue中,一起提交的Command Buffer1 和Command Buffer2 按照下标的顺序执行,Command Buffer1 先执行

3.3 Barriers

所有的同步原语中,Barriers使用起来最为困难。Barriers用于显式的控制buffer或者image的访问范围,避免hazards(RaW,WaR,and WaW),保证数据一致性。

Barriers需要开发者了解渲染管线的各个阶段,能清晰的把握管线中每个步骤对资源的读写顺序。

Vulkan中将Pipeline的各个阶段定义为:

  • TOP_OF_PIPE_BIT
  • DRAW_INDIRECT_BIT
  • VERTEX_INPUT_BIT
  • VERTEX_SHADER_BIT
  • TESSELLATION_CONTROL_SHADER_BIT
  • TESSELLATION_EVALUATION_SHADER_BIT
  • GEOMETRY_SHADER_BIT
  • FRAGMENT_SHADER_BIT
  • EARLY_FRAGMENT_TESTS_BIT
  • LATE_FRAGMENT_TESTS_BIT
  • COLOR_ATTACHMENT_OUTPUT_BIT
  • TRANSFER_BIT
  • COMPUTE_SHADER_BIT
  • BOTTOM_OF_PIPE_BIT

对应:

Vulkan 多线程渲染

假设我们有个两个渲染管线P1 和 P2,P1会通过Vertex Shader往buffer写入顶点数据,P2需要在Compute Shader中使用这些数据。

如果使用fence去同步,你的流程应该是这样:P1的Command提交后,P2通过fence确保P1的操作已经被全部执行完,再开始工作。

Vulkan 多线程渲染

但是这种大颗粒度的同步操作无疑造成了耗时操作:P1的数据在Vertex Shader阶段就已经准备好了,我们为什么要等到它所有操作执行完再开始?P2平白多等待了很长时间,而且在这个期间P2的其他阶段并没有使用到P1的数据,也是可以执行的啊。

Barriers的引入完全解决了这个问题,我们只需要告诉Vulkan,我们在P2的Compute Shader阶段才会等待P1 Vertex Shader里面的数据,其他阶段并不关心,可以同步进行。

Vulkan 多线程渲染

使用方法:

Vulkan 多线程渲染

参考文档:

  1. Vulkan Overview

  2. Android and Vulkan - GDD China.pdf

  3. Vulkan Programming Guide

  4. Vulkan Cookbook

  5. Learning Vulkan

  6. Vulkan Multi-Threading

  7. Vulkan中的同步机制

  8. Vulkan® 1.1.148 - A Specification

  9. vulkan中的同步和缓存控制之二,barrier和event

  10. vulkan中的同步和缓存控制之一,fence和semaphore

  11. VULKAN BARRIERS EXPLAINED