VGG16中3个3*3卷积核对AlexNet中7*7卷积核的替代性分析

时间:2024-03-31 13:36:03

使用更小的卷积核是当前在保证网络精度的情况下,减少参数的趋势之一,在VGG16中,使用了3个3*3卷积核来代替7*7卷积核,使用了2个3*3卷积核来代替7*7卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果。

以下简单地说明一下小卷积(3*3)对于5×5网络感知野相同的替代性。

如图所示:

VGG16中3个3*3卷积核对AlexNet中7*7卷积核的替代性分析

关于3个3×3卷积核对于7× 7 卷积的替代性思考方式同上。

接下来说明以下减少参数的作用。

对于两个3*3卷积核,所用的参数总量为2*(3*3)*channels, 对于5*5卷积核为5*5*channels, 因此可以显著地减少参数的数量。