深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述

时间:2024-03-29 22:30:27

深度学习相关的一些Review / Survey

开题开题要开题!开题push我短时间狂看了超级多文献(心虚地表示过得都很粗,唉、、、毕竟要先解决文献综述),题目涉及多源数据融合,室内场景重建。自己去溯源一个方向的发展和技术变革真的难,尤其是现在知识技术更新这么快,当下新技术层出不穷,初学者甚至入门好几年的人也未必能快速分辨一项工作的价值,这才意识到,综述不是谁不谁都能写的!!梳理前人工作,并且准确把握当下方向,也给后人提供一个快速的参考。瑞思拜!!!感觉必须应该要被更多的人知道和使用!

形式说明:

【基于篇幅限制(都整理出来了自己去看啊~),只放 题目(链接地址)+发表年份+引用+摘要截图】

语义分割(2D image、3D point cloud)

A Review on Deep Learning Techniques Applied to Semantic Segmentation》2017

作者:A. Garcia-Garcia, S. Orts-Escolano, S.O. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez
深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述
cite: Garcia-Garcia A , Orts-Escolano S , Oprea S , et al. A Review on Deep Learning Techniques Applied to Semantic Segmentation[J]. 2017.

A Review of Deep Learning-Based Semantic Segmentation for Point Cloud》2019

作者:JIAYING ZHANG , XIAOLI ZHAO , ZHENG CHEN , AND ZHEJUN LU
深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述
cite: Zhang J , Zhao X , Chen Z , et al. A Review of Deep Learning-Based Semantic Segmentation for Point Cloud[J]. IEEE Access, 2019, 7:179118-179133.

三维重建(single image、RGB-D、SLAM)

Single image 3D object reconstruction based on deep learning:A review》2020

作者:Kui Fu1 & Jiansheng Peng1,2 & Qiwen He1 & Hanxiao Zhang2
深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述

cite: Fu K , Peng J , He Q , et al. Single image 3D object reconstruction based on deep learning: A review[J]. Multimedia Tools and Applications, 2020:1-36.

《State of the Art on 3D Reconstruction with RGB-D Cameras》2018

作者:Michael Zollhöfer1;2, Patrick Stotko3, Andreas Görlitz4, Christian Theobalt1, Matthias Nießner5, Reinhard Klein3, Andreas Kolb4深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述
cite:Zollhöfer, Michael, Stotko P , Görlitz, Andreas, et al. State of the Art on 3D Reconstruction with RGB-D Cameras[J]. Computer Graphics Forum, 2018, 37(2):625-652.

Visual SLAM algorithms-a survey from 2010 to 2016》2017

作者:Takafumi Taketomi1*, Hideaki Uchiyama2 and Sei Ikeda3
深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述

cite: Taketomi T , Uchiyama H , Ikeda S . Visual SLAM algorithms: a survey from 2010 to 2016[J]. Ipsj Transactions on Computer Vision & Applications, 2017, 9(1):16.

室内场景理解(2.5D-3D)

Indoor Scene Understanding in 2.5_3D for Autonomous Agents: A Survey》2019

作者:MUZAMMAL NASEER 1, SALMAN KHAN2,3, AND FATIH PORIKLI 1,
深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述
cite: Naseer M , Khan S , Porikli F . Indoor Scene Understanding in 2.5/3D for Autonomous Agents: A Survey[J]. IEEE Access, 2019, 7:1859-1887.

自动驾驶(点云数据、融合数据)

Deep Learning for LiDAR Point Clouds in Autonomous Driving:A Review》2020

作者:Ying Li ,Zilong Zhong , Dongpu Cao,
深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述

cite: Li Y , Ma L , Zhong Z , et al. Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, PP(99):1-21.

Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review 》2020

作者:Yaodong Cui, Ren Chen, Wenbo Chu, Long Chen, Daxin Tian, Ying Li, Dongpu Cao
深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述
cite: Cui Y , Chen R , Chu W , et al. Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review[J]. 2020.

点云数据(分类、检测、分割)

Deep Learning for 3D Point Clouds:A Survey》2020

作者:Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun
深度学习一些应用方向(点云数据处理、自动驾驶、语义分割、三维重建、场景理解等)的综述

cite:Guo Y , Wang H , Hu Q , et al. Deep Learning for 3D Point Clouds: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP(99):1-1.