在运行 MapReduce 程序时,输入的文件格式包括:基于行的日志文件、二进制格式文件、数据库表等。那么,针对不同的数据类型,MapReduce 是如何读取这些数据?
FileInputFormat 用来读取数据,其本身为一个抽象类,继承自 InputFormat 抽象类,针对不同的类型的数据有不同的子类来处理。
FileInputFormat 常见的接口实现类包括:TextInputFormat、KeyValueTextInputFormat、NLinelnputFormat、CombineTextInputFormat 和自定义 ImputFormat 等。
1.TextInputFormat 与 CombineTextInputFormat 类似,都是按行读取,键为偏移量,值为当前行的类容,只是切片机制不同。
2.KeyValueTextInputFormat 也是按行读取,当前行内容被分隔符分为 key 和 value。默认分隔符为 tab(\t),可设置。
测试数据
按照空格分割,控制台日志(会取第一个匹配字符进行分割)
测试代码,统计重复 key 的次数
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueLineRecordReader;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.BasicConfigurator; import java.io.IOException; public class KVDriver { static {
try {
// 设置 HADOOP_HOME 环境变量
System.setProperty("hadoop.home.dir", "D://DevelopTools/hadoop-2.9.2/");
// 日志初始化
BasicConfigurator.configure();
// 加载库文件
System.load("D://DevelopTools/hadoop-2.9.2/bin/hadoop.dll");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load.\n" + e);
System.exit(1);
}
} public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { args = new String[]{"D:\\tmp\\input2", "D:\\tmp\\456"};
Configuration conf = new Configuration(); // 设置分隔符
conf.set(KeyValueLineRecordReader.KEY_VALUE_SEPERATOR, " "); Job job = Job.getInstance(conf);
job.setJarByClass(KVDriver.class); job.setMapperClass(KVMapper.class);
job.setReducerClass(KVReducer.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); // 设置 FileInputFormat
job.setInputFormatClass(KeyValueTextInputFormat.class); FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
} class KVMapper extends Mapper<Text, Text, Text, IntWritable> { IntWritable v = new IntWritable(1); @Override
protected void map(Text key, Text value, Context context) throws IOException, InterruptedException {
// 查看 k-v
System.out.println(key + "===" + value);
context.write(key, v);
}
} class KVReducer extends Reducer<Text, IntWritable, Text, IntWritable> { IntWritable v = new IntWritable(); @Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
v.set(sum);
context.write(key, v);
}
}
3.NLinelnputFormat 与 TextInputFormat 和 CombineTextInputFormat 类似,但切片机制不同。
每个 map 进程处理的 InputSplit 不再按 Blok 块去划分,而是按 NlinelnputFormat 指定的行数 N 来划分。即(输入文件的总行数/N=切片数),如果不整除,切片数=商+1。
同样的测试数据,设置一行为一个切片
k-v 值
切片数
测试代码,统计单词数量
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.NLineInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.BasicConfigurator; import java.io.IOException; public class NLineDriver { static {
try {
// 设置 HADOOP_HOME 环境变量
System.setProperty("hadoop.home.dir", "D://DevelopTools/hadoop-2.9.2/");
// 日志初始化
BasicConfigurator.configure();
// 加载库文件
System.load("D://DevelopTools/hadoop-2.9.2/bin/hadoop.dll");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load.\n" + e);
System.exit(1);
}
} public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
args = new String[]{"D:\\tmp\\input2", "D:\\tmp\\456"}; Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration); job.setJarByClass(NLineDriver.class);
job.setMapperClass(NLineMapper.class);
job.setReducerClass(NLineReducer.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); // 使用 NLineInputFormat 处理记录数
job.setInputFormatClass(NLineInputFormat.class);
// 设置每个切片 InputSplit 中划分一条记录
NLineInputFormat.setNumLinesPerSplit(job, 1); FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
} class NLineMapper extends Mapper<LongWritable, Text, Text, IntWritable> { Text k = new Text();
IntWritable v = new IntWritable(1); @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 查看 k-v
System.out.println(key + "===" + value);
// 获取一行
String line = value.toString();
// 切割
String[] words = line.split(" ");
// 循环写出
for (String word : words) {
k.set(word);
context.write(k, v);
}
}
} class NLineReducer extends Reducer<Text, IntWritable, Text, IntWritable> { IntWritable v = new IntWritable(); @Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
v.set(sum);
context.write(key, v);
}
}
MapReduce-FileInputFormat的更多相关文章
-
MapReduce :基于 FileInputFormat 的 mapper 数量控制
本篇分两部分,第一部分分析使用 java 提交 mapreduce 任务时对 mapper 数量的控制,第二部分分析使用 streaming 形式提交 mapreduce 任务时对 mapper 数量 ...
-
MapReduce的map个数调节 与 Hadoop的FileInputFormat的任务切分原理
在对日志等大表数据进行处理的时候需要人为地设置任务的map数,防止因map数过小导致集群资源被耗光.可根据大表的数据量大小设置每个split的大小. 例如设置每个split为500M: set map ...
-
Hadoop(16)-MapReduce框架原理-自定义FileInputFormat
1. 需求 将多个小文件合并成一个SequenceFile文件(SequenceFile文件是Hadoop用来存储二进制形式的key-value对的文件格式),SequenceFile里面存储着多个文 ...
-
MapReduce之提交job源码分析 FileInputFormat源码解析
MapReduce之提交job源码分析 job 提交流程源码详解 //runner 类中提交job waitForCompletion() submit(); // 1 建立连接 connect(); ...
-
Hadoop Mapreduce 中的FileInputFormat类的文件切分算法和host选择算法
文件切分算法 文件切分算法主要用于确定InputSplit的个数以及每个InputSplit对应的数据段. FileInputFormat以文件为单位切分成InputSplit.对于每个文件,由以下三 ...
-
Hadoop(15)-MapReduce框架原理-FileInputFormat的实现类
1. TextInputFormat 2.KeyValueTextInputFormat 3. NLineInputFormat
-
mapreduce多文件输出的两方法
mapreduce多文件输出的两方法 package duogemap; import java.io.IOException; import org.apache.hadoop.conf ...
-
mapreduce中一个map多个输入路径
package duogemap; import java.io.IOException; import java.util.ArrayList; import java.util.List; imp ...
-
[Hadoop in Action] 第5章 高阶MapReduce
链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter 1.链接MapReduce作业 [顺序链接MapReduce作业] mapreduce-1 | mapr ...
-
MapReduce
2016-12-21 16:53:49 mapred-default.xml mapreduce.input.fileinputformat.split.minsize 0 The minimum ...
随机推荐
-
Flexible 弹性盒子模型之CSS flex-shrink 属性
实例 让第二个元素收缩到其他元素的三分之一: 效果预览 div:nth-of-type(2){flex-shrink:3;} 浏览器支持 表格中的数字表示支持该属性的第一个浏览器的版本号. 紧跟在 - ...
-
Apache Spark源码走读之15 -- Standalone部署模式下的容错性分析
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就standalone部署方式下的容错性问题做比较细致的分析,主要回答standalone部署方式下的包含哪些主要节点,当某一类节点出现问题时,系统是如 ...
-
夺命雷公狗---DEDECMS----33dedecms自定义搜索以及分页功能完成
我们现在要开始实现模版里面的搜索功能了,我们先找要做出一个检索提交表单,如下所示: 只要我们点击生成之后我们的表单就获取到了,可以直接拿生成好的html表单拿来用来测试下.. 将他嵌入首页的模版文件, ...
-
js 监听整个页面的回车事件
JS监听整个页面的回车事件 <script type="text/javascript"> document.onkeydown=keyDownSearch; ...
-
Linuxshell脚本之if条件判断
IF条件判断 .基本语法: if [ command ]; then 符合该条件执行的语句 fi .扩展语法: if [ command ];then 符合该条件执行的语句 elif [ comman ...
-
linux 查看用户所在组(groups指令的使用) 含实例
经常将某个文件夹的权限赋给某个用户的时候,也需要配置该用户所在的组,因此,我们需要查看该用户有哪些组,我们可以使用如上命令查看用户所在组 [oracle@gl ~]$ vi /etc/group ro ...
-
Android Selector原理
android的selector对于android开发者而言再熟悉不过了,只要定义一个drawable目录下定义一个selector的xml文件,在布局文件中引用这个xml文件或者在代码中setBac ...
-
Docker 私有仓库建立(加密和用户验证)
(一)生成证书1.mkdir /certs2.cd /certs 3.生成自签名证书 sudo openssl req -newkey rsa:2048 -new -nodes -x509 -days ...
-
阅读:ECMAScript 6 入门(4)
参考 ECMAScript 6 入门 ES6新特性概览 ES6 全套教程 ECMAScript6 (原著:阮一峰) JavaScript 教程 重新介绍 JavaScript(JS 教程) 数组的扩展 ...
-
php 固定红包 + 随机红包算法
<?php /** * 随机红包+固定红包算法[策略模式] * copyright (c) 2016 http://blog.csdn.net/CleverCode */ //配置传输数据DTO ...