【排序算法】实现快速排序值(霍尔法&&三指针法&&挖坑法&&优化随即选key&&中位数法&&小区间法&&非递归版本)

时间:2024-03-28 15:53:17

请添加图片描述

文章目录

  • ????快速排序
    • ????霍尔法
    • ????三指针法
    • ????挖坑法
      • ✏️优化快速排序
  • ????随机选key
    • ????三位数取中
  • ????小区间选择走插入,可以减少90%左右的递归
  • ???? 快速排序改非递归版本
  • ????总结


????快速排序

快速排序是一种分治算法。它通过一趟排序将数据分割成独立的两部分,然后再分别对这两部分数据进行快速排序。

本文将用3种方法实现:

????霍尔法

霍尔法是一种快速排序中常用的单趟排序方法,由霍尔先发现。

它通过选定一个基准数key(通常是第一个元素),然后利用双指针leftright的方式进行排序,right指针先找比key基准值小的数,left然后找比key基准值大的数,找到后将两个数交换位置,同时实现大数右移和小数左移,当leftright相遇就排序完成,然后将下标key的值与left交换,返回基准数key的下标,完成了单趟排序。这一过程使得基准数左侧的元素都比基准数小,右侧的元素都比基准数大。

如图动图展示:
请添加图片描述
以下是单趟排序的详解图解过程:

  • beginend记录区间的范围,left记录做下标,从左向右遍历,right记录右下标,从右向左遍历,以第一个数key作为基基准值
    在这里插入图片描述
  • 先让right出发,找比key值小的值,找到就停下来
    在这里插入图片描述
  • 然后left再出发,找比key大的值,若是找到则停下来,与right的值进行交换
    在这里插入图片描述
  • 接着right继续找key小的值,找到后才让left找比key大的值,直到left相遇right,此时left会指向同一个数
    在这里插入图片描述
    在这里插入图片描述
  • leftright指向的数与key进行交换,单趟排序就完成了,最后将基准值的下标返回
    在这里插入图片描述
    为啥相遇位置比key要小->右边先走保证的
  1. LR: R先走,R在比key小的位置停下来了,L没有找到比key大的,就会跟R相遇相遇位置R停下的位置,是比key小的位置
  2. RL:第一轮以后的,先交换了,L位置的值小于key,R位置的值大于keyR启动找小,没有找到,跟L相遇了,相遇位置L停下位置,这个位置比key
  • 第一轮RL,那么就是R没有找到小的,直接就一路左移,遇到L,也就是key的位置

代码实现

void Swap(int* px, int* py)
{
	int tmp = *px;
	*px = *py;
	*py = tmp;
}

//Hoare经典随机快排
void QuickSort1(int* a, int left, int right)
{
	// 如果左指针大于等于右指针,表示数组为空或只有一个元素,直接返回
	if (left >= right)
		return;

	// 区间只有一个值或者不存在就是最小子问题
	int begin = left, end = right;// begin和end记录原始整个区间
	// keyi为基准值下标,初始化为左指针
	int keyi = left;

	 // 循环从left到right
	while (left < right)
	{
		// right先走,找小,这里和下面的left<right一方面也是为了防止,right一路走出区间,走到left-1越界
		while (left<right && a[right] >= a[keyi])
		{
			--right;
		}
		// 左指针移动,找比基准值大的元素   
		while (left<right && a[left] <= a[keyi])
		{
			++left;
		}
		Swap(&a[left], &a[right]);
	}
	// 交换左右指针所指元素
	Swap(&a[left], &a[keyi]);
	// 更新基准值下标
	keyi = left;
	
	// 递归排序左右两部分
	//[begin , keyi-1]keyi[keyi+1 , end]
	QuickSort1(a, begin, keyi - 1);
	QuickSort1(a, keyi + 1, end);

}

????三指针法

定义一个数组,第一个元素还是key基准值,定义前指针prev指向第一个数,后指针cur指向第二个数,让cur走,然后遍历数组,cur找到大于等于key基准值的数,cur++cur向前走一步。当cur指针小于key基准值时,后指针加一走一步(++prev),然后交换prevcur所指的值进行交换,因为这样cur一直都是小于key的值,让他继续向前不断找大的,而prev一直在找小的。依次类推,到cur遍历完数组,完成单趟排序。
如此动图理解:
请添加图片描述
简单总结:
在这里插入图片描述
以下是单趟排序的详解图解过程:

  1. 一开始,让prev指向第一个数,cur指向prev的下一位,此时cur位置的数比key基准值小,所以prev加一后,与cur位置的数交换,由于此时prev+1 == cur,自己跟自己交换,交换没变,完了让cur++走下一个位置。
    在这里插入图片描述
    紧接着:
    在这里插入图片描述

  2. cur继续前进,此时来到了7的位置,大于key的值6cur++继续向前走,来到9位置,9还是大于6,OK ! 我curcur++,来到3的位置,也是看到curprev拉开了距离,所以他又叫前后指针,这就体现出来,往下看–》
    在这里插入图片描述
    在这里插入图片描述

  3. 此时此刻,我cur的值小于key基准值,先让prev走一步,然后与cur的值交换交换
    在这里插入图片描述
    在这里插入图片描述

  4. 同样的步骤,重复上述遍历,直到遍历完数组

在这里插入图片描述在这里插入图片描述

  1. cur遍历完数组后,将交换prev的值key的基准值进行交换,交换完,将key的下标更新为prev下标的,然后返回key下标,完成单趟。
    在这里插入图片描述
    代码如下:
void QuickSort2(int* a, int left, int right)
{
	// 如果左指针大于等于右指针,表示数组为空或只有一个元素,直接返回
	if (left >= right)
		return;
		
	// keyi为基准值下标,初始化为左指针
	int keyi = left;
	
	// prev记录每次交换后的下标
	int prev = left;

	// cur为遍历指针
	int cur = left+1;
	
	// 循环从左指针+1的位置开始到右指针结束
	while (cur <= right)
	{
		// 如果cur位置元素小于基准值,并且prev不等于cur
	    // 就将prev和cur位置元素交换
	    // 并将prev后移一位
		if (a[cur] < a[keyi] && ++prev != cur)
			Swap(&a[prev], &a[cur]);

		++cur;//不管是cur小于还是大于,是否交换,cur都后移一位      cur都++
	}
	// 将基准值和prev位置元素交换
	Swap(&a[keyi], &a[prev]);
	 // 更新基准值下标为prev
	keyi = prev;
	
	// 递归调用左右两部分
	// [left, keyi-1]keyi[keyi+1, right]
	QuickSort2(a, left, keyi - 1);
	QuickSort2(a, keyi + 1, right);
}

????挖坑法

挖坑法也是快速排序的一种单趟排序方法。它也是利用双指针,但与霍尔法不同的是,挖坑法在每次找到比基准数小的元素时,会将其值填入基准数所在的位置,然后将基准数所在的位置作为“坑”,接着从右边开始找比基准数大的元素填入这个“坑”,如此往复,直到双指针相遇。最后,将基准数填入最后一个“坑”的位置。
请添加图片描述
挖坑法思路:
您提到的挖坑法是一种快速排序的实现方式。

  1. 选择基准值(key),将其值保存到另一个变量pivot中作为"坑"
  2. 从左往右扫描,找到小于基准值的元素,将其值填入"坑"中,然后"坑"向右移动一个位置
  3. 从右往左扫描,找到大于或等于基准值的元素,将其值填入移动后的"坑"中
  4. 重复步骤23,直到左右两个指针相遇
  5. 将基准值填入最后一个"坑"位置
  6. 对基准值左右两边递归分治,【begin,key-1keykey+1,end】重复上述过程,实现递归排序

与双指针法相比,挖坑法在处理基准值时使用了额外的"坑"变量,简化了元素交换的操作,但思想都是利用基准值将数组分割成两部分。

代码如下:

//挖坑法
void Dig_QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
		return;

	//一趟的实现
	int key = a[begin];
	int pivot = begin;
	int left = begin;
	int right = end;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		a[pivot] = a[right];
		pivot = right;
		while (left < right && a[left] <= key)
		{
			left++;
		}
		a[pivot] = a[left];
		pivot = left;
	}

	//补坑位
	a[pivot] = key;
	
	//递归分治
	//[begin, piti - 1] piti [piti + 1, end]
	Dig_QuickSort(a, begin, pivot - 1);
	Dig_QuickSort(a, pivot + 1, end);
}

当你讨厌挖左边的坑,可以试试右边的坑????:
代码如下:

// 交换元素
void swap(int* a, int* b) 
{
    int t = *a;
    *a = *b;
    *b = t;
}

// 分区操作函数
int partition(int arr[], int low, int high) 
{

    // 取最后一个元素作为基准值
    int pivot = arr[high];

    // 初始化左右索引  
    int i = (low - 1);

    // 从左到右遍历数组
    for (int j = low; j <= high - 1; j++) 
    {

        // 如果当前元素小于或等于基准值
        if (arr[j] <= pivot) 
        {

            // 左索引向右移动一位
            i++;

            // 将当前元素与左索引位置元素交换  
            swap(&arr[i], &arr[j]);
        }
    }

    // 将基准值和左索引位置元素交换
    swap(&arr[i + 1], &arr[high]);

    // 返回基准值的最终位置
    return (i + 1);
}


// 快速排序主函数
void quickSort(int arr[], int low, int high) 
{

    // 如果低位索引小于高位索引,表示需要继续排序
    if (low < high) 
    {

        // 调用分区函数,得到基准值的位置
        int pi = partition(arr, low, high);

        // 对基准值左边子数组递归调用快速排序
        quickSort(arr, low, pi - 1);

        // 对基准值右边子数组递归调用快速排序   
        quickSort(arr, pi + 1, high);
    }
}

// 测试
int main() 
{
    // 测试数据
    int arr1[] = { 5,3,6,2,10,1,4 };
    int n1 = sizeof(arr1) / sizeof(arr1[0]);
    quickSort(arr1, 0, n1 - 1);
    // 输出排序结果
    for (int i = 0; i < n1; i++)
    {
        printf("%d ", arr1[i]);
    }
    printf("\n");

    int arr2[] = { 5,3,6,2,10,1,4,29,44,1,3,4,5,6 };
    int n2 = sizeof(arr2) / sizeof(arr2[0]);
    quickSort(arr2, 0, n2 - 1);
    // 输出排序结果
    for (int i = 0; i < n2; i++)
    {
        printf("%d ", arr2[i]);
    }
    printf("\n");

    // 测试数据
    int arr3[] = { 10,1,4,5,3,6,2,1 };
    int n3 = sizeof(arr3) / sizeof(arr3[0]);
    quickSort(arr3, 0, n3 - 1);
    // 输出排序结果
    for (int i = 0; i < n3; i++)
    {
        printf("%d ", arr3[i]);
    }
    printf("\n");

    return 0;
}

运行启动:
在这里插入图片描述

✏️优化快速排序

????随机选key

为什么要使用随机数选取key?
避免最坏情况,即每次选择子数组第一个或最后一个元素作为key,这样会导致时间复杂度退化为O(n^2)
随机化可以减少排序不均匀数据对算法性能的影响。
相比固定选择第一个或最后一个元素,随机选择key可以在概率上提高算法的平均性能。

这里是优化快速排序使用随机数选取key的方法:

  1. 在划分子数组前,随机生成一个[left,right]区间中的随机数randi
  2. 将随机randi处的元素与区间起始元素left交换
  3. 使用这个随机索引取出子数组中的元素作为keyi。

随机选key逻辑代码:

//快排,随机选key
void QuickSort3(int* a, int left, int right) 
{

  //区间只有一个值或者不存在就是最小子问题
  if (left >= right)
    return;

  int begin = left, end = right;

  //选[left,right]区间中的随机数做key
  int randi = rand() % (right - left + 1);  
  //rand() % N生成0到N-1的随机数
  randi += left;  

  //将随机索引处的元素与区间起始元素交换
  Swap(&a[left], &a[randi]);

  //用交换后的元素作为基准值keyi
  int keyi = left;

  while (left < right) 
  {
    
    //从右向左找小于key的元素
    while (left < right && a[right] >= a[keyi]) 
    {
      --right;
    }
    
    //从左向右找大于key的元素      
    while (left < right && a[left] <= a[keyi]) 
    {
      ++left; 
    }

    //交换元素
    Swap(&a[left], &a[right]);
  }

  //将基准值与交叉点元素交换
  Swap(&a[left], &a[keyi]);
  keyi = left;

  //递归处理子区间
  QuickSort3(a, begin, keyi - 1);
  QuickSort3(a, keyi + 1, end);
}

????三位数取中

有无序数列数组的首和尾后,我们只需要在首,中,尾这三个数据中,选择一个排在中间的数据作为基准值(keyi),进行快速排序,减少极端情况,进一步提高快速排序的平均性能。
代码实现:

// 三数取中  left  mid  right
// 大小居中的值,也就是不是最大也不是最小的
int GetMidi(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	
	if (a[left] < a[mid])
	{
		if (a[mid] < a[right])
		{
			return mid;
		}
		else if (a[left] > a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else // a[left] > a[mid]
	{
		if (a[mid] > a[right])
		{
			return mid;
		}
		else if (a[left] < a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
}

取中的返回函数接收:

		int begin = left, end = right;
		// 三数取中
		int midi = GetMidi(a, left, right);
		//printf("%d\n", midi);
		Swap(&a[left], &a[midi]);

整体函数实现:

//三数取中  left  mid  right
//大小居中的值,也就是不是最大,也不是最小的
int GetMid(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	
	if (a[left] < a[mid])
	{
		if (a[mid] < a[right])
		{
			return mid;
		}
		else if(a[left] > a[right])
		{
			return left;
		}
		else
		{
			return  right;
		}
	}
	else//a[left] > a[mid]
	{
		if (a[mid] > a[right])
		{
			return mid;
		}
		else if (a[right] > a[left])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
}


void QuickSort4(int* a, int left, int right)
{
	if (left >= right)
		return;

	int begin = left, end = right;
	//三数取中
	int midi = GetMid(a, left, right);
	//printf("%d\n",midi);
	Swap(&a[left], &a[midi]);

	int keyi = left;
	while (left < right)
	{
		while (left < right && a[right] >= a[keyi])
		{
			--right;
		}
		while (left < right && a[left] <= a[keyi])
		{
			++left;
		}

		Swap(&a[left], &a[right]);
	}

	Swap(&a[left], &a[keyi]);
	keyi = le