仅以此文记录自己在4-5月份面试过程中遇到的问题,以备不时之需,描述相对简单。
1.actomic的底层原理是什么?
AtomicInteger 是对 int 类型的一个封装,提供原子性的访问和更新操作,其原子性的操作实现是基于 CAS (compare-and-swap)技术。
CAS,表征的是一些列操作的集合,获取当前数值,进行一些运算,利用 CAS 指令试图进行更新,如果当前数值不变,代码没有其他线程进行并发修改,则成功更新。否则,可能出现不同的选择,要么进行重试,要么就反应一个成功或者失败的结果。
2.currenthashmap在1.8与1.7中的不同点
(1)map为数组和链表结构。(1.8为数组+红黑树)
(2)1.7使用分段锁技术,将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。整个过程中进行两次hash操作。
总结:
1.数据结构:取消了Segment分段锁的数据结构,取而代之的是数组+链表+红黑树的结构。
2.保证线程安全机制:JDK1.7采用segment的分段锁机制实现线程安全,其中segment继承自ReentrantLock。JDK1.8采用CAS+Synchronized保证线程安全。
3.锁的粒度:原来是对需要进行数据操作的Segment加锁,现调整为对每个数组元素加锁(Node)。
4.链表转化为红黑树:定位结点的hash算法简化会带来弊端,Hash冲突加剧,因此在链表节点数量大于8时,会将链表转化为红黑树进行存储。
5.查询时间复杂度:从原来的遍历链表O(n),变成遍历红黑树O(logN)。
3.常用的缓存有哪些,有什么区别
1、数据操作不同
与Memcached仅支持简单的key-value结构的数据记录不同,Redis支持的数据类型要丰富得多。Memcached基本只支持简单的key-value存储,不支持枚举,不支持持久化和复制等功能。Redis支持服务器端的数据操作相比Memcached来说,拥有更多的数据结构和并支持更丰富的数据操作,支持list、set、sorted set、hash等众多数据结构,还同时提供了持久化和复制等功能。而通常在Memcached里,使用者需要将数据拿到客户端来进行类似的修改再set回去,这大大增加了网络IO的次数和数据体积。在Redis中,这些复杂的操作通常和一般的GET/SET一样高效。所以,如果需要缓存能够支持更复杂的结构和操作, Redis会是更好的选择。
2、内存管理机制不同
在Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。当物理内存用完时,Redis可以将一些很久没用到的value交换到磁盘。Redis只会缓存所有的key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以保持超过其机器本身内存大小的数据。
3、性能不同
由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比Memcached性能更高。而在100k以上的数据中,Memcached性能要高于Redis,虽然Redis也在存储大数据的性能上进行了优化,但是比起Memcached,还是稍有逊色。
4、集群管理不同
Memcached是全内存的数据缓冲系统,Redis虽然支持数据的持久化,但是全内存毕竟才是其高性能的本质。作为基于内存的存储系统来说,机器物理内存的大小就是系统能够容纳的最大数据量。如果需要处理的数据量超过了单台机器的物理内存大小,就需要构建分布式集群来扩展存储能力。
4.说说数据库性能优化有哪些方法?
答:使用explain进行优化,查看sql是否充分使用索引。避免使用in,用exist替代,尽量避免使用select *,只查询一条数据的时候使用limit 1,字段值尽可能使用更小的值,任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。使用连接查询(join)代替子查询,,使用读写分离。
5.分布式锁?
类型一:数据库乐观锁
在数据库中创建一个表,表中包含方法名等字段,并在方法名字段上创建唯一索引,想要执行某个方法,就使用这个方法名向表中插入数据,成功插入则获取锁,执行完成后删除对应的行数据释放锁。
待优化问题:
1、因为是基于数据库实现的,数据库的可用性和性能将直接影响分布式锁的可用性及性能,所以,数据库需要双机部署、数据同步、主备切换;
2、不具备可重入的特性,因为同一个线程在释放锁之前,行数据一直存在,无法再次成功插入数据,所以,需要在表中新增一列,用于记录当前获取到锁的机器和线程信息,在再次获取锁的时候,先查询表中机器和线程信息是否和当前机器和线程相同,若相同则直接获取锁;
3、没有锁失效机制,因为有可能出现成功插入数据后,服务器宕机了,对应的数据没有被删除,当服务恢复后一直获取不到锁,所以,需要在表中新增一列,用于记录失效时间,并且需要有定时任务清除这些失效的数据;
4、不具备阻塞锁特性,获取不到锁直接返回失败,所以需要优化获取逻辑,循环多次去获取。
5、在实施的过程中会遇到各种不同的问题,为了解决这些问题,实现方式将会越来越复杂;依赖数据库需要一定的资源开销,性能问题需要考虑。
类型二:Redis实现分布式锁
SETNX(判断是否存在key),expire,delete
类型三:基于ZooKeeper的实现方式
ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。基于ZooKeeper实现分布式锁的步骤如下:
(1)创建一个目录mylock;
(2)线程A想获取锁就在mylock目录下创建临时顺序节点;
(3)获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁;
(4)线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;
(5)线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。
这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。
优点:具备高可用、可重入、阻塞锁特性,可解决失效死锁问题。
缺点:因为需要频繁的创建和删除节点,性能上不如Redis方式。
6.java类的初始化顺序
父类静态变量——父类静态代码块——子类静态变量——子类静态代码块——父类非静态变量——父类非静态代码块——父类构造函数——子类非静态变量——子类非静态代码块——子类构造函数
7.可重入锁
以下为转载,侵删。
ReentrantLock常常对比着synchronized来分析,我们先对比着来看然后再一点一点分析。
(1)synchronized是独占锁,加锁和解锁的过程自动进行,易于操作,但不够灵活。ReentrantLock也是独占锁,加锁和解锁的过程需要手动进行,不易操作,但非常灵活。
(2)synchronized可重入,因为加锁和解锁自动进行,不必担心最后是否释放锁;ReentrantLock也可重入,但加锁和解锁需要手动进行,且次数需一样,否则其他线程无法获得锁。
(3)synchronized不可响应中断,一个线程获取不到锁就一直等着;ReentrantLock可以相应中断。
ReentrantLock好像比synchronized关键字没好太多,我们再去看看synchronized所没有的,一个最主要的就是ReentrantLock还可以实现公平锁机制。什么叫公平锁呢?也就是在锁上等待时间最长的线程将获得锁的使用权。通俗的理解就是谁排队时间最长谁先执行获取锁。
响应中断就是一个线程获取不到锁,不会傻傻的一直等下去,ReentrantLock会给予一个中断回应。在这里我们举一个死锁的案例。
首先我们定义一个测试类ReentrantLockTest3。
在这里我们定义了两个锁lock1和lock2。然后使用两个线程thread和thread1构造死锁场景。正常情况下,这两个线程相互等待获取资源而处于死循环状态。但是我们此时thread中断,另外一个线程就可以获取资源,正常地执行了。