三、用户标签
内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。
今日头条推荐算法原理全文详解 今日头条 数据分析 产品经理 产品 好文分享 第19张
今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。
今日头条推荐算法原理全文详解 今日头条 数据分析 产品经理 产品 好文分享 第20张
当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。主要包括:一、过滤噪声。通过停留时间短的点击,过滤标题党。二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。
今日头条推荐算法原理全文详解 今日头条 数据分析 产品经理 产品 好文分享 第21张
用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。
今日头条推荐算法原理全文详解 今日头条 数据分析 产品经理 产品 好文分享 第22张
但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。
今日头条推荐算法原理全文详解 今日头条 数据分析 产品经理 产品 好文分享 第23张
面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。
今日头条推荐算法原理全文详解 今日头条 数据分析 产品经理 产品 好文分享 第24张
当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。