taoyan:伪码农,R语言爱好者,爱开源。
个人博客: https://ytlogos.github.io/
公众号:生信大讲堂
往期回顾
ggplot2学习笔记系列之利用ggplot2绘制误差棒及显著性标记
本文基于NASA的夜间地图(https://www.nasa.gov/specials/blackmarble/2016/globalmaps/BlackMarble_2016_01deg.jpg)的基础上进行世界航班路线可视化,参考多篇博客以及可视化案例。
1. 包加载
本博客使用的包较多,利用pacman包里的p_load()函数进行加载
library(pacman)
p_load(tidyverse, data.table, geosphere, grid, jpeg, plyr)
2. 数据准备
使用的数据来自于OpenFlights.org(https://openflights.org/data.html)。
3.数据下载
download.file("https://raw.githubusercontent.com/jpatokal/openflights/master/data/airlines.dat",destfile = "airlines.dat", mode = "wb")
download.file("https://raw.githubusercontent.com/jpatokal/openflights/master/data/airports.dat",destfile = "airports.dat", mode = "wb")
download.file("https://raw.githubusercontent.com/jpatokal/openflights/master/data/routes.dat",destfile = "routes.dat", mode = "wb")
4.数据导入
airlines <- fread("airlines.dat", sep = ",", skip = 1)
airports <- fread("airports.dat", sep = ",")
routes <- fread("routes.dat", sep = ",")
5. 数据整理
#添加列名colnames(airlines) <- c("airline_id", "name", "alias", "iata", "icao", "callisign", "country", "active")
colnames(airports) <- c("airport_id", "name", "city", "country","iata", "icao", "latitude", "longitude","altitude", "timezone","dst","tz_database_time_zone","type", "source")
colnames(routes) <- c("airline", "airline_id", "source_airport", "source_airport_id","destination_airport","destination_airport_id","codeshare", "stops","equipment")
#类型转换
routes$airline_id <- as.numeric(routes$airline_id)
# airlines与routes数据融合
flights <- left_join(routes, airlines, by="airline_id")
# flights与airports数据融合
airports_orig <- airports[,c(5,7,8)]
colnames(airports_orig) <- c("source_airport","source_airport_lat", "source_airport_long")
airports_dest <- airports[, c(5, 7, 8)]
colnames(airports_dest) <- c("destination_airport", "destination_airport_lat", "destination_airport_long")
flights <- left_join(flights, airports_orig, by = "source_airport")
flights <- left_join(flights, airports_dest, by = "destination_airport")
#剔除缺失值
flights <- na.omit(flights, cols = c("source_airport_long", "source_airport_lat", "destination_airport_long", "destination_airport_lat"))
#最后数据如下
head(flights[,c(1:5)])
6. 下面就是准备地理信息数据
本文主要是可视化地理信息上的点与点之间的连接,这可以通过geosphere包里的函数gcIntermediate()很轻松实现。具体使用方法可以参考这里(http://flowingdata.com/2011/05/11/how-to-map-connections-with-great-circles/)。
# 按航空公司拆分数据集
flights_split <- split(flights, flights$name)
# Calculate intermediate points between each two locations
flights_all <- lapply(flights_split, function(x) gcIntermediate(x[, c("source_airport_long", "source_airport_lat")], x[, c("destination_airport_long", "destination_airport_lat")], n=100, breakAtDateLine = FALSE, addStartEnd = TRUE, sp = TRUE))
# 转换为数据框
flights_fortified <- lapply(flights_all, function(x) ldply([email protected], fortify))
# Unsplit lists
flights_fortified <- do.call("rbind", flights_fortified)
# Add and clean column with airline names
flights_fortified$name <- rownames(flights_fortified)
flights_fortified$name <- gsub("\\..*", "", flights_fortified$name)
# Extract first and last observations for plotting source and destination points (i.e., airports)
flights_points <- flights_fortified %>%
group_by(group) %>%
filter(row_number() == 1 | row_number() == n())
二、 可视化
接下来就是进行可视化了,前面讲了我们只是在NASA提供的夜间地球图上面进行数据映射,所以第一我们需要获取该背景地图。
1. 图片获取并渲染
#下载图片
download.file("https://www.nasa.gov/specials/blackmarble/2016/globalmaps/BlackMarble_2016_01deg.jpg",destfile = "BlackMarble_2016_01deg.jpg", mode = "wb")
#加载并渲染图片
earth <- readJPEG("BlackMarble_2016_01deg.jpg", native = TRUE)
earth <- rasterGrob(earth, interpolate = TRUE)
2. 数据映射
由于航空公司十分多,就挑选几个有名的航空公司进行可视化。
(1) Lufthansa(德国汉莎航空公司)
ggplot() +
annotation_custom(earth, xmin = -180, xmax = 180, ymin = -90, ymax = 90) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.0, size = 0.0, data = flights_fortified) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.2, size = 0.3, color = "#f9ba00", data = flights_fortified[flights_fortified$name == "Lufthansa", ]) +
geom_point(data = flights_points[flights_points$name == "Lufthansa", ], aes(long, lat), alpha = 0.8, size = 0.1, colour = "white") +
theme(panel.background = element_rect(fill = "#05050f", colour = "#05050f"),panel.grid.major = element_blank(),panel.grid.minor = element_blank(),axis.title = element_blank(),axis.text = element_blank(),axis.ticks.length = unit(0, "cm"),legend.position = "none") +annotate("text", x = -150, y = -18, hjust = 0, size = 14,label = paste("Lufthansa"), color = "#f9ba00", family = "Helvetica Black") +
annotate("text", x = -150, y = -26, hjust = 0, size = 8,
label = paste("Flight routes"), color = "white") +
annotate("text", x = -150, y = -30, hjust = 0, size = 7,
label = paste("ytlogos.github.io || NASA.gov || OpenFlights.org"), color = "white", alpha = 0.5) +
coord_equal()
(2) Emirates(阿联酋航空公司)
ggplot() +
annotation_custom(earth, xmin = -180, xmax = 180, ymin = -90, ymax = 90) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.0, size = 0.0, data = flights_fortified) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.2, size = 0.3, color = "#ff0000", data = flights_fortified[flights_fortified$name == "Emirates", ]) +
geom_point(data = flights_points[flights_points$name == "Emirates", ], aes(long, lat), alpha = 0.8, size = 0.1, colour = "white") +
theme(panel.background = element_rect(fill = "#05050f", colour = "#05050f"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks.length = unit(0, "cm"),
legend.position = "none") +
annotate("text", x = -150, y = -18, hjust = 0, size = 14,
label = paste("Emirates"), color = "#ff0000", family = "Fontin") +
annotate("text", x = -150, y = -26, hjust = 0, size = 8,
label = paste("Flight routes"), color = "white") +
annotate("text", x = -150, y = -30, hjust = 0, size = 7,
label = paste("ytlogos.github.io || NASA.gov || OpenFlights.org"), color = "white", alpha = 0.5) +
coord_equal()
(3) British Airways(英国航空公司)
ggplot() +
annotation_custom(earth, xmin = -180, xmax = 180, ymin = -90, ymax = 90) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.0, size = 0.0, data = flights_fortified) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.2, size = 0.3, color = "#075aaa", data = flights_fortified[flights_fortified$name == "British Airways", ]) +
geom_point(data = flights_points[flights_points$name == "British Airways", ], aes(long, lat), alpha = 0.8, size = 0.1, colour = "white") +
theme(panel.background = element_rect(fill = "#05050f", colour = "#05050f"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks.length = unit(0, "cm"),
legend.position = "none") +
annotate("text", x = -150, y = -18, hjust = 0, size = 14,
label = paste("BRITISH AIRWAYS"), color = "#075aaa", family = "Baker Signet Std") +
annotate("text", x = -150, y = -26, hjust = 0, size = 8,
label = paste("Flight routes"), color = "white") +
annotate("text", x = -150, y = -30, hjust = 0, size = 7,
label = paste("ytlogos.github.io || NASA.gov || OpenFlights.org"), color = "white", alpha = 0.5) +
coord_equal()
(4) Air China(中国国航)
ggplot() +
annotation_custom(earth, xmin = -180, xmax = 180, ymin = -90, ymax = 90) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.0, size = 0.0, data = flights_fortified) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.2, size = 0.3, color = "#F70C15", data = flights_fortified[flights_fortified$name == "Air China", ]) +
geom_point(data = flights_points[flights_points$name == "Air China", ], aes(long, lat), alpha = 0.8, size = 0.1, colour = "white") +
theme(panel.background = element_rect(fill = "#05050f", colour = "#05050f"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks.length = unit(0, "cm"),
legend.position = "none") +
annotate("text", x = -150, y = -18, hjust = 0, size = 14,
label = paste("Air China"), color = "#F70C15", family = "Times New Roman") +
annotate("text", x = -150, y = -26, hjust = 0, size = 8,
label = paste("Flight routes"), color = "white") +
annotate("text", x = -150, y = -30, hjust = 0, size = 7,
label = paste("ytlogos.github.io || NASA.gov || OpenFlights.org"), color = "white", alpha = 0.5) +
coord_equal()
(5) China Southern Airlines(中国南航)
ggplot() +
annotation_custom(earth, xmin = -180, xmax = 180, ymin = -90, ymax = 90) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.0, size = 0.0, data = flights_fortified) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.2, size = 0.3, color = "#004D9D", data = flights_fortified[flights_fortified$name == "China Southern Airlines", ]) +
geom_point(data = flights_points[flights_points$name == "China Southern Airlines", ], aes(long, lat), alpha = 0.8, size = 0.1, colour = "white") +
theme(panel.background = element_rect(fill = "#05050f", colour = "#05050f"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks.length = unit(0, "cm"),
legend.position = "none") +
annotate("text", x = -150, y = -18, hjust = 0, size = 14,
label = paste("China Southern Airlines"), color = "#004D9D", family = "Times New Roman") +
annotate("text", x = -150, y = -26, hjust = 0, size = 8,
label = paste("Flight routes"), color = "white") +
annotate("text", x = -150, y = -30, hjust = 0, size = 7,
label = paste("ytlogos.github.io || NASA.gov || OpenFlights.org"), color = "white", alpha = 0.5) +
coord_equal()
(6) 一次性映射多家航空公司航行路线
#抽取数据集
flights_subset <- c("Lufthansa", "Emirates", "British Airways")
flights_subset <- flights_fortified[flights_fortified$name %in% flights_subset, ]
flights_subset_points <- flights_subset%>%
group_by(group)%>%
filter(row_number()==1|row_number()==n())
#可视化
ggplot() +
annotation_custom(earth, xmin = -180, xmax = 180, ymin = -90, ymax = 90) +
geom_path(aes(long, lat, group = id, color = name), alpha = 0.2, size = 0.3, data = flights_subset) +
geom_point(data = flights_subset_points, aes(long, lat), alpha = 0.8, size = 0.1, colour = "white") +
scale_color_manual(values = c("#f9ba00", "#ff0000", "#075aaa")) +
theme(panel.background = element_rect(fill = "#05050f", colour = "#05050f"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks.length = unit(0, "cm"),
legend.position = "none") +
annotate("text", x = -150, y = -4, hjust = 0, size = 14,
label = paste("Lufthansa"), color = "#f9ba00", family = "Helvetica Black") +
annotate("text", x = -150, y = -11, hjust = 0, size = 14,
label = paste("Emirates"), color = "#ff0000", family = "Fontin") +
annotate("text", x = -150, y = -18, hjust = 0, size = 14,
label = paste("BRITISH AIRWAYS"), color = "#075aaa", family = "Baker Signet Std") +
annotate("text", x = -150, y = -30, hjust = 0, size = 8,
label = paste("Flight routes"), color = "white") +
annotate("text", x = -150, y = -34, hjust = 0, size = 7,
label = paste("ytlogos.github.io || NASA.gov || OpenFlights.org"), color = "white", alpha = 0.5) +
coord_equal()
三、 SessionInfo
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=Chinese (Simplified)_China.936 LC_CTYPE=Chinese (Simplified)_China.936
[3] LC_MONETARY=Chinese (Simplified)_China.936 LC_NUMERIC=C
[5] LC_TIME=Chinese (Simplified)_China.936
attached base packages:
[1] grid stats graphics grDevices utils datasets methods base
other attached packages:
[1] plyr_1.8.4 jpeg_0.1-8 geosphere_1.5-7 data.table_1.10.4-3
[5] forcats_0.2.0 stringr_1.2.0 dplyr_0.7.4 purrr_0.2.4
[9] readr_1.1.1 tidyr_0.8.0 tibble_1.4.2 ggplot2_2.2.1.9000
[13] tidyverse_1.2.1 pacman_0.4.6
loaded via a namespace (and not attached):
[1] Rcpp_0.12.15 cellranger_1.1.0 pillar_1.1.0 compiler_3.4.3 bindr_0.1
[6] tools_3.4.3 lubridate_1.7.1 jsonlite_1.5 nlme_3.1-131 gtable_0.2.0
[11] lattice_0.20-35 pkgconfig_2.0.1 rlang_0.1.6 psych_1.7.8 cli_1.0.0
[16] rstudioapi_0.7 yaml_2.1.16 parallel_3.4.3 haven_1.1.1 bindrcpp_0.2
[21] xml2_1.2.0 httr_1.3.1 knitr_1.19 hms_0.4.1 glue_1.2.0
[26] R6_2.2.2 readxl_1.0.0 foreign_0.8-69 sp_1.2-7 modelr_0.1.1
[31] reshape2_1.4.3 magrittr_1.5 scales_0.5.0.9000 rvest_0.3.2 assertthat_0.2.0
[36] mnormt_1.5-5 colorspace_1.3-2 stringi_1.1.6 lazyeval_0.2.1 munsell_0.4.3
[41] broom_0.4.3 crayon_1.3.4
公众号后台回复关键字即可学习
回复 R R语言快速入门及数据挖掘
回复 Kaggle案例 Kaggle十大案例精讲(连载中)
回复 文本挖掘 手把手教你做文本挖掘
回复 可视化 R语言可视化在商务场景中的应用
回复 大数据 大数据系列免费****
回复 量化投资 张丹教你如何用R语言量化投资
回复 用户画像 京东大数据,揭秘用户画像
回复 数据挖掘 常用数据挖掘算法原理解释与应用
回复 机器学习 人工智能系列之机器学习与实践
回复 爬虫 R语言爬虫实战案例分享