ROC(Receiver Operating Characteristic)曲线和AUC(Area Under the Curve)值常被用来评价一个二值分类器(binary classifier) 的优劣。
ROC曲线是以假阳性率FPR为横轴,以真阳性率TPR为纵轴的一个曲线图像。图像中的每一点是一个分类阈值,根据一些连续的分类阈值可以得到ROC的图像,如下图:有20个样本,其中真实正例有10个,用p表示,负例有10个,用n表示。Inst# 代表样本编号,Class代表样本真实的类别,Score表示利用模型得出每个测试样本属于真实样本的概率。依次将Score概率从大到小排序,得到下表:
从第一个样本开始直到第20个样本,依次将Score当做分类阈值threshold。当预测测试样本属于正样本的概率大于或等于该threshold时,我们认为该样本是正样本,否则是负样本。
如:拿到第一个样本,该样本真实类别是p,Score=0.9,将0.9看成分类阈值threshold,那么该样本预测是正例,TPR=1/10,FPR=0/10=0,拿到第二个样本,该样本真实类别是p,Score=0.8,将0.8作为threshold,该样本预测是正例,TPR=2/10,FPR=0/10=0 … … 以此类推,当拿到第7个样本时,该样本真实类别是n,Score=0.53,将0.53看成分类阈值threshold,预测为正例,但是预测错误,将本该属于负例的样本预测为正例,那么当阈值为0.53时,共预测7个样本,预测正确的样本标号为1,2,4,5,6。预测错误的样本标号为:3,7。那么此时,TPR=5/10=0.5,FPR=2/10=0.2。
按照以上方式,每选择一个阈值threshold时,都能得出一组TPR和FPR,即ROC图像上的一点。通过以上,可以得到20组TPF和FPR,可以得到ROC图像如下,当threshold取值越多,ROC曲线越平滑。
上图图像当样本真实类别为正例时,模型预测该样本为正例那么图像向上画一步(TPR方向)。如果该样本真实类别是负例,模型预测该样本为正例那么图像向右画一步(FPR方向)。
下图中,如果ROC的图像是通过(0,0)点和(1.1)点的一条直线也就是①线,那么当前模型的预测能力是0.5,即:模型在预测样本时,预测对一次,预测错一次,会形成①曲线。如果ROC曲线是②线,那么该模型预测数据的真阳性率大于假阳性率,也就是模型预测对的次数多,预测错的次数少,模型越好。当模型的ROC曲线为③线时,模型的假阳性率比真阳性率大,模型预测错的次数多,预测对的次数少,还不如随机瞎蒙的概率0.5。综上所述,ROC的曲线越是靠近纵轴,越陡,该模型越好。那么如何根据ROC来量化评价一个模型的好坏,这就要用到AUC面积。
AUC面积是ROC曲线与横轴(假阳性率,FPR)围城的面积,也就是曲线下方的面积。AUC面积越大越好,代表模型分类效果更准确。
计算AUC的公式:
其中,是属于正例的样本。M:测试样本中的正例数。N:测试样本中的负例数。代表将测试样本(正例和负例都有)中的Score值按照正序排序,找到样本属于正例的索引号累加和。
AUC=1,完美的分类器,采用这个预测模型时,不管设定什么样的阈值都能正确的预测结果。绝大多数情况下,不存在这种分类器。
0.5<AUC<1,优于随机猜测,可以调节分类阈值,使AUC越靠近1,模型效果越好。
AUC=0.5,和随机分类一样,就是随机瞎蒙,模型没有预测价值。
AUC<0.5,比随机分类还差,大多数情况下成功避开了正确的结果。
AUC这种评估方式较计算准确率的评估方式更好。假设有两个模型M1与M2,两个模型的准确率都是80%,假设默认阈值0.5时,M1模型预测正例的概率多数位于0.51左右,但不小于0.5。M2模型预测正例的概率多数位于0.9附近,那么同样是80%的正确率下,M2模型将结果预测的更彻底,反映到AUC面积中,M2中预测正例的概率多数位于0.9左右,对应的比较大,相应的AUC值比较大,而M1的AUC相对较小。所以AUC这种评估模型的方式更能说明模型好有多好,能更好的计算模型的纯度。