挑战杯 电影评论情感分析 - python 深度学习 情感分类-4 实现

时间:2024-03-20 22:48:12

4.1 数据预处理

    #导入必要的包import zipfile
​    import os
​    import io
​    import random
​    import json
​    import matplotlib.pyplot as plt
​    import numpy as np
​    import paddle
​    import paddle.fluid as fluid
​    from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Embedding
​    from paddle.fluid.dygraph.base import to_variable
​    from paddle.fluid.dygraph import GRUUnit
​    import paddle.dataset.imdb as imdb


​    
​    
​    #加载字典def load_vocab():
​        vocab = imdb.word_dict()return vocab
​    #定义数据生成器class SentaProcessor(object):def __init__(self):
​            self.vocab = load_vocab()
   def data_generator(self, batch_size, phase='train'):
        if phase == "train":
            return paddle.batch(paddle.reader.shuffle(imdb.train(self.vocab),25000), batch_size, drop_last=True)
        elif phase == "eval":
            return paddle.batch(imdb.test(self.vocab), batch_size,drop_last=True)
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'eval']")

步骤

  1. 首先导入必要的第三方库

  2. 接下来就是数据预处理,需要注意的是:数据是以数据标签的方式表示一个句子,因此,每个句子都是以一串整数来表示的,每个数字都是对应一个单词。当然,数据集就会有一个数据集字典,这个字典是训练数据中出现单词对应的数字标签。

4.2 构建网络

这次的GRU模型分为以下的几个步骤

  • 定义网络
  • 定义损失函数
  • 定义优化算法

具体实现如下

    #定义动态GRU
    class DynamicGRU(fluid.dygraph.Layer):
        def __init__(self,
                     size,
                     param_attr=None,
                     bias_attr=None,
                     is_reverse=False,
                     gate_activation='sigmoid',
                     candidate_activation='relu',
                     h_0=None,
                     origin_mode=False,
                     ):
            super(DynamicGRU, self).__init__()
            self.gru_unit = GRUUnit(
                size * 3,
                param_attr=param_attr,
                bias_attr=bias_attr,
                activation=candidate_activation,
                gate_activation=gate_activation,
                origin_mode=origin_mode)
            self.size = size
            self.h_0 = h_0
            self.is_reverse = is_reverse
        def forward(self, inputs):
            hidden = self.h_0
            res = []
            for i in range(inputs.shape[1]):
                if self.is_reverse:
                    i = inputs.shape[1] - 1 - i
                input_ = inputs[ :, i:i+1, :]
                input_ = fluid.layers.reshape(input_, [-1, input_.shape[2]], inplace=False)
                hidden, reset, gate = self.gru_unit(input_, hidden)
                hidden_ = fluid.layers.reshape(hidden, [-1, 1, hidden.shape[1]], inplace=False)
                res.append(hidden_)
            if self.is_reverse:
                res = res[::-1]
            res = fluid.layers.concat(res, axis=1)
            return res


class GRU(fluid.dygraph.Layer):
def init(self):
super(GRU, self).init()
self.dict_dim = train_parameters[“vocab_size”]
self.emb_dim = 128
self.hid_dim = 128
self.fc_hid_dim = 96
self.class_dim = 2
self.batch_size = train_parameters[“batch_size”]
self.seq_len = train_parameters[“padding_size”]
self.embedding = Embedding(
size=[self.dict_dim + 1, self.emb_dim],
dtype=‘float32’,
param_attr=fluid.ParamAttr(learning_rate=30),
is_sparse=False)
h_0 = np.zeros((self.batch_size, self.hid_dim), dtype=“float32”)
h_0 = to_variable(h_0)

        self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.hid_dim*3)
        self._fc2 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="relu")
        self._fc_prediction = Linear(input_dim=self.fc_hid_dim,
                                output_dim=self.class_dim,
                                act="softmax")
        self._gru = DynamicGRU(size=self.hid_dim, h_0=h_0)
        
    def forward(self, inputs, label=None):
        emb = self.embedding(inputs)
        o_np_mask =to_variable(inputs.numpy().reshape(-1,1) != self.dict_dim).astype('float32')
        mask_emb = fluid.layers.expand(
            to_variable(o_np_mask), [1, self.hid_dim])
        emb = emb * mask_emb
        emb = fluid.layers.reshape(emb, shape=[self.batch_size, -1, self.hid_dim])
        fc_1 = self._fc1(emb)
        gru_hidden = self._gru(fc_1)
        gru_hidden = fluid.layers.reduce_max(gru_hidden, dim=1)
        tanh_1 = fluid.layers.tanh(gru_hidden)
        fc_2 = self._fc2(tanh_1)
        prediction = self._fc_prediction(fc_2)
        
        if label is not None:
            acc = fluid.layers.accuracy(prediction, label=label)
            return prediction, acc
        else:
            return prediction

4.3 训练模型

    def train():
        with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
        # with fluid.dygraph.guard(place = fluid.CPUPlace()):


processor = SentaProcessor()
train_data_generator = processor.data_generator(batch_size=train_parameters[“batch_size”], phase=‘train’)

        model = GRU()
        sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["lr"],parameter_list=model.parameters())

        steps = 0
        Iters, total_loss, total_acc = [], [], []
        for eop in range(train_parameters["epoch"]):
            for batch_id, data in enumerate(train_data_generator()):

                steps += 1
                doc = to_variable(
                    np.array([
                        np.pad(x[0][0:train_parameters["padding_size"]], 
                              (0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),
                               'constant',
                              constant_values=(train_parameters["vocab_size"]))
                        for x in data
                    ]).astype('int64').reshape(-1))
                label = to_variable(
                    np.array([x[1] for x in data]).astype('int64').reshape(
                        train_parameters["batch_size"], 1))
        
                model.train()
                prediction, acc = model(doc, label)
                loss = fluid.layers.cross_entropy(prediction, label)
                avg_loss = fluid.layers.mean(loss)
                avg_loss.backward()
                sgd_optimizer.minimize(avg_loss)
                model.clear_gradients()
 
                if steps % train_parameters["skip_steps"] == 0:
                    Iters.append(steps)
                    total_loss.append(avg_loss.numpy()[0])
                    total_acc.append(acc.numpy()[0])
                    print("step: %d, ave loss: %f, ave acc: %f" %
                         (steps,avg_loss.numpy(),acc.numpy()))

                if steps % train_parameters["save_steps"] == 0:
                    save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)
                    print('save model to: ' + save_path)
                    fluid.dygraph.save_dygraph(model.state_dict(),
                                                   save_path)
    draw_train_process(Iters, total_loss, total_acc)

在这里插入图片描述
在这里插入图片描述

4.4 模型评估

在这里插入图片描述

结果还可以,这里说明的是,刚开始的模型训练评估不可能这么好,很明显是过拟合的问题,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将GRU模型换为更为合适的RNN中的LSTM以及bi-
LSTM模型会好很多。

4.5 模型预测

train_parameters["batch_size"] = 1
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):

    sentences = 'this is a great movie'
    data = load_data(sentences)
    print(sentences)
    print(data)
    data_np = np.array(data)
    data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)
    infer_np_doc = to_variable(data_np)

    model_infer = GRU()
    model, _ = fluid.load_dygraph("data/save_dir_750.pdparams")
    model_infer.load_dict(model)
    model_infer.eval()
    result = model_infer(infer_np_doc)
    print('预测结果为:正面概率为:%0.5f,负面概率为:%0.5f' % (result.numpy()[0][0],result.numpy()[0][1]))

在这里插入图片描述

训练的结果还是挺满意的,到此为止,我们的本次项目实验到此结束。