分类算法之决策树C4.5算法

时间:2024-03-20 21:35:05

C4.5,是机器学习算法中的另一个分类决策树算法,它是决策树(决策树也就是做决策的节点间的组织方式像一棵树,其实是一个倒树)核心算法,也是上节所介绍的ID3的改进算法,所以基本上了解了一半决策树构造方法就能构造它。

    决策树构造方法其实就是每次选择一个好的特征以及分裂点作为当前节点的分类条件。

    既然说C4.5算法是ID3的改进算法,那么C4.5相比于ID3改进的地方有哪些呢?:

  1. 用信息增益率来选择属性。ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(entropy,熵是一种不纯度度量准则),也就是熵的变化值,而C4.5用的是信息增益率。对,区别就在于一个是信息增益,一个是信息增益率。
  2. 在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致overfitting。
  3. 对非离散数据也能处理。
  4. 能够对不完整数据进行处理

 

针对上述第一点,解释下:一般来说率就是用来取平衡用的,就像方差起的作用差不多,比如有两个跑步的人,一个起点是10m/s的人、其10s后为20m/s;另一个人起速是1m/s、其1s后为2m/s。如果紧紧算差值那么两个差距就很大了,如果使用速度增加率(加速度,即都是为1m/s^2)来衡量,2个人就是一样的加速度。因此,C4.5克服了ID3用信息增益选择属性时偏向选择取值多的属性的不足。

C4.5算法之信息增益率

    OK,既然上文中提到C4.5用的是信息增益率,那增益率的具体是如何定义的呢?:

    是的,在这里,C4.5算法不再是通过信息增益来选择决策属性。一个可以选择的度量标准是增益比率gain ratioQuinlan 1986)。增益比率度量是用前面的增益度量Gain(S,A)和分裂信息度量SplitInformation(S,A)来共同定义的,如下所示:

分类算法之决策树C4.5算法

    其中,分裂信息度量被定义为(分裂信息用来衡量属性分裂数据的广度和均匀):

   分类算法之决策树C4.5算法

    其中S1到Sc是c个值的属性A分割S而形成的c个样例子集。注意分裂信息实际上就是S关于属性A的各值的熵。这与我们前面对熵的使用不同,在那里我们只考虑S关于学习到的树要预测的目标属性的值的熵。

    请注意,分裂信息项阻碍选择值为均匀分布的属性。例如,考虑一个含有n个样例的集合被属性A彻底分割(译注:分成n组,即一个样例一组)。这时分裂信息的值为log2n。相反,一个布尔属性B分割同样的n个实例,如果恰好平分两半,那么分裂信息是1。如果属性A和B产生同样的信息增益,那么根据增益比率度量,明显B会得分更高。

    使用增益比率代替增益来选择属性产生的一个实际问题是,当某个Si接近S(|Si|»|S|)时分母可能为0或非常小。如果某个属性对于S的所有样例有几乎同样的值,这时要么导致增益比率未定义,要么是增益比率非常大。为了避免选择这种属性,我们可以采用这样一些启发式规则,比如先计算每个属性的增益,然后仅对那些增益高过平均值的属性应用增益比率测试Quinlan 1986)。

                       信息增益比 = 惩罚参数 * 信息增益
书中公式:
分类算法之决策树C4.5算法
注意:其中的HA(D),对于样本集合D,将当前特征A作为随机变量(取值是特征A的各个特征值),求得的经验熵。
(之前是把集合类别作为随机变量,现在把某个特征作为随机变量,按照此特征的特征取值对集合D进行划分,计算熵HA(D))
分类算法之决策树C4.5算法
      信息增益比本质: 是在信息增益的基础之上乘上一个惩罚参数。特征个数较多时,惩罚参数较小;特征个数较少时,惩罚参数较大。
        惩罚参数:数据集D以特征A作为随机变量的熵的倒数,即:将特征A取值相同的样本划分到同一个子集中(之前所说数据集的熵是依据类别进行划分的)
        分类算法之决策树C4.5算法
        缺点:信息增益比偏向取值较少的特征   
        原因:  当特征取值较少时HA(D)的值较小,因此其倒数较大,因而信息增益比较大。因而偏向取值较少的特征。

下面以ID3相同的weather数据集(全部为分类属性)为例,分析C4.5构建决策树的详细过程。

分类算法之决策树C4.5算法

数据集weather具有属性{outlook,temperature,humidity,wind},每个属性的取值分别为outlook={sunny,overcast,rain},temperature={hot,mild,cool},humidity={high,normal},wind={weak,strong},C4.5对weather数据集建立决策树的过程如下:
<1> 计算所有属性划分数据集S所得的信息增益分别如下:
Gain(S,outlook)=0.246
Gain(S,temperature)=0.029
Gain(S,humidity)=0.152
Gain(S,wind)=0.049
<2> 计算各属性的分裂信息和信息增益率。
对outlook属性,取值为overcast的样本有4条,取值为rain的样本有5条,取值为sunny的样本有5条,则
分类算法之决策树C4.5算法
对temperature属性,取值为cool的样本有4条,取值为hot的样本有4条,取值为mild的有6条,则
分类算法之决策树C4.5算法
对humidity属性,取值为high的样本有7条,取值为normal的样本有7条,则
分类算法之决策树C4.5算法
对wind属性,取值为weak的样本有8条,取值为strong的样本有6条,则
分类算法之决策树C4.5算法
可以看出,outlook属性的信息增益率是最大的,所以选择outlook属性作为决策树的根节点,产生3个分支,往后计算依次类推。

在决策树的创建时,由于数据中的噪声和离群点,许多分枝反映的是训练数据中的异常。剪枝方法是用来处理这种过分拟合数据的问题。通常剪枝方法都是使用统计度量,剪去最不可靠的分枝。

    剪枝一般分两种方法:先剪枝和后剪枝。

    先剪枝方法中通过提前停止树的构造(比如决定在某个节点不再分裂或划分训练元组的子集)而对树剪枝。一旦停止,这个节点就变成树叶,该树叶可能取它持有的子集最频繁的类作为自己的类。先剪枝有很多方法,比如(1)当决策树达到一定的高度就停止决策树的生长;(2)到达此节点的实例具有相同的特征向量,而不必一定属于同一类,也可以停止生长(3)到达此节点的实例个数小于某个阈值的时候也可以停止树的生长,不足之处是不能处理那些数据量比较小的特殊情况(4)计算每次扩展对系统性能的增益,如果小于某个阈值就可以让它停止生长。先剪枝有个缺点就是视野效果问题,也就是说在相同的标准下,也许当前扩展不能满足要求,但更进一步扩展又能满足要求。这样会过早停止决策树的生长。

    另一种更常用的方法是后剪枝,它由完全成长的树剪去子树而形成。通过删除节点的分枝并用树叶来替换它。树叶一般用子树中最频繁的类别来标记。

    C4.5采用悲观剪枝法,它使用训练集生成决策树又用它来进行剪枝,不需要独立的剪枝集。

    悲观剪枝法的基本思路是:设训练集生成的决策树是T,用T来分类训练集中的N的元组,设K为到达某个叶子节点的元组个数,其中分类错误地个数为J。由于树T是由训练集生成的,是适合训练集的,因此J/K不能可信地估计错误率。所以用(J+0.5)/K来表示。设S为T的子树,其叶节点个数为L(s),分类算法之决策树C4.5算法 为到达此子树的叶节点的元组个数总和,分类算法之决策树C4.5算法 为此子树中被错误分类的元组个数之和。在分类新的元组时,则其错误分类个数为分类算法之决策树C4.5算法 ,其标准错误表示为:分类算法之决策树C4.5算法  。当用此树分类训练集时,设E为分类错误个数,当下面的式子成立时,则删掉子树S,用叶节点代替,且S的子树不必再计算。

        分类算法之决策树C4.5算法 。