python threading模块操作多线程介绍

时间:2022-01-31 02:24:43

python是支持多线程的,并且是native的线程。主要是通过thread和threading这两个模块来实现的。thread是比较底层的模块,threading是对thread做了一些包装的,可以更加方便的被使用。这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下个版本的python中已经考虑改进这点,让我们拭目以待吧。

    threading模块里面主要是对一些线程的操作对象化了,创建了叫Thread的class。一般来说,使用线程有两种模式,一种是创建线程要执行的函数,把这个函数传递进Thread对象里,让它来执行;另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的class里。我们来看看这两种做法吧。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#-*- encoding: gb2312 -*-
import string, threading, time
 
def thread_main(a):
  global count, mutex
  # 获得线程名
  threadname = threading.currentThread().getName()
  
  for x in xrange(0, int(a)):
    # 取得锁
    mutex.acquire()
    count = count + 1
    # 释放锁
    mutex.release()
    print threadname, x, count
    time.sleep(1)
  
def main(num):
  global count, mutex
  threads = []
  
  count = 1
  # 创建一个锁
  mutex = threading.Lock()
  # 先创建线程对象
  for x in xrange(0, num):
    threads.append(threading.Thread(target=thread_main, args=(10,)))
  # 启动所有线程
  for t in threads:
    t.start()
  # 主线程中等待所有子线程退出
  for t in threads:
    t.join()
  
  
if __name__ == '__main__':
  num = 4
  # 创建4个线程
  main(4)

上面的就是第一种做法,这种做法是很常见的,下面是另一种,曾经使用过Java的朋友应该很熟悉这种模式:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#-*- encoding: gb2312 -*-
import threading
import time
 
class Test(threading.Thread):
  def __init__(self, num):
    threading.Thread.__init__(self)
    self._run_num = num
  
  def run(self):
    global count, mutex
    threadname = threading.currentThread().getName()
  
    for x in xrange(0, int(self._run_num)):
      mutex.acquire()
      count = count + 1
      mutex.release()
      print threadname, x, count
      time.sleep(1)
 
if __name__ == '__main__':
  global count, mutex
  threads = []
  num = 4
  count = 1
  # 创建锁
  mutex = threading.Lock()
  # 创建线程对象
  for x in xrange(0, num):
    threads.append(Test(10))
  # 启动线程
  for t in threads:
    t.start()
  # 等待子线程结束
  for t in threads:
    t.join()