一.必须掌握的基础知识
1.感知机
2.与非门
3.矩阵运算
二.神经网络组成
1.神经网络可以看做由多个感知机组成,如图
2.神经网络的内积
设x1=1,x2=2,则可以用矩阵表示,而权重可以用表示,那么y1,y2,y3则是这两个矩阵的内积
3.定义符号,我们已经了解了神经元之间的基本运算为矩阵运算,然后我们需要定义符号,每个教材用的符号不一定相同,我用的这本教材如下定义
4.信息的传递如下图
用公式来表示单一神经元则是
如果整体表示的话则是
4.加入偏置b以及**函数
如上图,图中阴影部分的1代表偏置,偏置可以任意取值,我们可以令a=w1xX1+w2xX2+b(偏置)来表示
而**函数可以认为是图中的h(),**函数有很多种,此处用sigmoid函数(sigmoid函数可以参考我另外一篇博客)
我们将输入的a带入h()函数,可以得到另外一个值,这个值作为该隐藏层的输出输入到下一个神经元
5.以此类推,神经网络向前计算如下图
最后一次输出用的是恒等函数作为**函数,也可以参考我另外一篇博客