最优化方法——最速下降法,阻尼牛顿法,共轭梯度法
目录
1、不精确一维搜素
1.1 Wolfe-Powell 准则
2、不精确一维搜索算法计算步骤
3、最速下降法
3.1 基本思想
3.2 计算步骤
3.3 迭代过程
3.4 优缺点分析
4、(阻尼)牛顿法
4.1 基本思想
4.2 迭代过程
5、共轭方向法和共轭梯度法
5.1 共轭梯度法与前两种方法的比较
5.2 共轭梯度法的迭代过程
6、Python代码实现
'''
wolfe powell 不精确一维搜索准则
1、f(x_(k)) - f(x_(k+1)) >= -c_1 * lamda * inv(g_k) * s_(k)
2、inv(g_(k+1)) * s_(k) >= c_2 * inv(g_(k)) * s_(k)
根据计算经验,常取c_1 = 0.1, c_2 = 0.5
0 < c_1 < c_2 < 1
'''
"""
函数 f(x)=100*(x(1)^2-x(2))^2+(x(1)-1)^2
梯度 g(x)=(400*(x(1)^2-x(2))*x(1)+2*(1-x(1)),-200*(x(1)^2-x(2)))
"""
import numpy as np
import sys
import matplotlib.pyplot as plt
def object_function(xk):
f = 100 * (xk[0] ** 2 - xk[1]) ** 2 + (xk[0] - 1) ** 2
return f
def gradient_function(xk):
gk = np.array([
400 * (xk[0] ** 2 - xk[1]) * xk[0] + 2 * (xk[0] - 1),
-200 * (xk[0] ** 2 - xk[1])
])
return gk
def hesse(xk):
# h = np.zeros(2, 2)
h = np.array([
[2 + 400 * (3 * xk[0] ** 2 - xk[1]), -400 * xk[0]],
[-400 * xk[0], 200]
])
return h
def wolfe_powell(xk, sk):
alpha = 1.0
a = 0.0
b = -sys.maxsize
c_1 = 0.1
c_2 = 0.5
k = 0
while k < 100:
k += 1
if object_function(xk) - object_function(xk + alpha * sk) >= -c_1 * alpha * np.dot(gradient_function(xk), sk):
#print('满足条件1')
if np.dot(gradient_function(xk + alpha * sk), sk) >= c_2 * np.dot(gradient_function(xk), sk):
#print('满足条件2')
return alpha
else:
a = alpha
alpha = min(2 * alpha, (alpha + b) / 2)
else:
b = alpha
alpha = 0.5 * (alpha + a)
return alpha
# 最速下降法
def steepest(x0, eps):
gk = gradient_function(x0)
sigma = np.linalg.norm(gk)
step = 0
xk = x0
w = np.zeros((2, 10 ** 4))# 保存迭代把变量xk
sk = -1 * gk
while sigma > eps and step < 10000:
alpha = wolfe_powell(xk, sk)
w[:, step] = np.transpose(xk)
step += 1
xk += alpha * sk
gk = gradient_function(xk)
sk = -1 * gk
sigma = np.linalg.norm(gk)
#print(gk,sigma)
print('--The {}-th iter, the result is {},object value is {:.4f}'.format(step, np.array(xk), object_function(xk)))
return w
# newton法
def newton(x0, eps):
step = 0
xk = x0
gk = gradient_function(xk)
hessen = hesse(xk)
sigma = np.linalg.norm(gk)
sk = -1 * np.dot(np.linalg.inv(hessen), gk)
w = np.zeros((2, 10 ** 3))# 保存迭代把变量xk
while sigma > eps and step < 100:
# newton 法中alpha = 1
w[:, step] = np.transpose(xk)
step += 1
xk = xk + sk
gk = gradient_function(xk)
hessen = hesse(xk)
sigma = np.linalg.norm(gk)
sk = -1 * np.dot(np.linalg.inv(hessen), gk)
print('--The {}-th iter, the result is {},object value is {:.4f}'.format(step, np.array(xk), object_function(xk)))
return w
# 阻尼 newton法
def Damped_newton(x0, eps):
step = 0
xk = x0
gk = gradient_function(xk)
hessen = hesse(xk)
sigma = np.linalg.norm(gk)
sk = -1 * np.dot(np.linalg.inv(hessen), gk)
w = np.zeros((2, 10 ** 3))# 保存迭代把变量xk
while sigma > eps and step < 100:
alpha = wolfe_powell(xk, sk)
w[:, step] = np.transpose(xk)
step += 1
xk = xk + alpha * sk
gk = gradient_function(xk)
hessen = hesse(xk)
sigma = np.linalg.norm(gk)
sk = -1 * np.dot(np.linalg.inv(hessen), gk)
print('--The {}-th iter, the result is {},object value is {:.4f}'.format(step, np.array(xk), object_function(xk)))
return w
# 共轭梯度法
def conjugate_gradient(x0, eps):
xk = x0
gk = gradient_function(xk)
sigma = np.linalg.norm(gk)
sk = -gk
step = 0
w = np.zeros((2, 10 ** 3))# 保存迭代把变量xk
while sigma > eps and step < 1000:
w[:, step] = np.transpose(xk)
step += 1
alpha = wolfe_powell(xk, sk)
xk = xk + alpha * sk
g0 = gk
gk = gradient_function(xk)
miu = (np.linalg.norm(gk) / np.linalg.norm(g0))**2
sk = -1 * gk + miu * sk
sigma = np.linalg.norm(gk)
print('--The {}-th iter, the result is {},object value is {:.4f}'.format(step, np.array(xk),object_function(xk)))
return w
if __name__ == '__main__':
eps = 1e-5
x0 = np.array([0.0, 0.0])
# 最速下降法
W = steepest(x0, eps)
# Newton迭代法
# W = newton(x0,eps)
# 阻尼Newton法
# W = Damped_newton(x0, eps)
# 共轭梯度算法
# W = conjugate_gradient(x0, eps)
# 画出目标函数图像
X1 = np.arange(-1.5, 1.5 + 0.05, 0.05)
X2 = np.arange(-1.5, 1.5 + 0.05, 0.05)
[x1, x2] = np.meshgrid(X1, X2)
f = 100 * (x1 ** 2 - x2) ** 2 + (x1 - 1) ** 2 # 给定的函数
plt.contour(x1, x2, f, 20) # 画出函数的20条轮廓线
plt.plot(W[0, :], W[1, :], 'g*', W[0, :], W[1, :]) # 画出迭代点收敛的轨迹
plt.show()
7、迭代图像
7.1 最速下降法迭代图像
7.2 牛顿法迭代图像
7.3 阻尼牛顿法迭代图像
7.4 共轭梯度法迭代图像