1230. K倍区间 - AcWing题库
//超时写法 需要优化
//两个1e5嵌套 变成1e10了>1e8需要优化
#include <bits/stdc++.h>
using namespace std;
const int N=100007;
int a[N];
int main(){
int n,k;cin>>n>>k;
for(int i=1;i<=n;i++){
cin>>a[i];
a[i]+=a[i-1];
}
int cnt=0;
for(int i=0;i<=n;i++){
for(int j=i+1;j<=n;j++){
int sum=a[j]-a[i];
if(sum%k==0)cnt++;
}
}
cout<<cnt;
return 0;
}
//优化:空间换时间
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N=100007;
int a[N];
int cnt[N];//开一个cnt数组 cnt[i]表示的是截止到目前为止余数是i的数有多少个
signed main(){
int n,k;cin>>n>>k;
for(int i=1;i<=n;i++){
cin>>a[i];
a[i]+=a[i-1];
}
int ans=0;
for(int r=0;r<=n;r++){//枚举右端点
ans+=cnt[a[r]%k];//前面余数为a[r]%k的cnt[a[r]%k]个数都能做左端点
cnt[a[r]%k]++;//加上自身
}
cout<<ans;
return 0;
}
796. 子矩阵的和 - AcWing题库
#include <bits/stdc++.h>
using namespace std;
const int N=1007;
//二维前缀和:预处理要与a[i][j]相关联
//预处理:s[i][j]=s[i-1][j]+s[i][j-1]+a[i][j]-s[i-1][j-1] -重复
//实现:(x1,y1)以左上角 (x2,y2)为右上角
//实现: s[x2[y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1][y2] +重复
//一维差分: 预处理b[i]=a[i]-a[i-1] b[i]改变后面的数都改
//二维差分:
//预处理:
//void insert(int x1,int y1,int x2,int y2){ +重复
//b[x1][y1]+=c;
//b[x2+1][y1]-=c;
//b[x1][y2+1]-=c;
//b[x2][y2]+=c;
//实现:
//b[i[j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1] -重复
int a[N][N];
int pre[N][N];
int main(){
int n,m,q;cin>>n>>m>>q;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>a[i][j];
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
pre[i][j]=pre[i-1][j]+pre[i][j-1]+a[i][j]-pre[i-1][j-1];
}
}
while(q--){
int x1,y1,x2,y2;cin>>x1>>y1>>x2>>y2;
cout<<pre[x2][y2]-pre[x1-1][y2]-pre[x2][y1-1]+pre[x1-1][y1-1]<<'\n';
}
return 0;
}
4405. 统计子矩阵 - AcWing题库
#include <bits/stdc++.h>
using namespace std;
const int N=1007;
int a[N][N];
int pre[N][N];
int main(){
int n,m,k;cin>>n>>m>>k;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>a[i][j];
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
pre[i][j]=pre[i-1][j]+pre[i][j-1]+a[i][j]-pre[i-1][j-1];
}
}
int cnt=0;
for(int x1=1;x1<=n;x1++){
for(int y1=1;y1<=m;y1++){
for(int x2=x1;x2<=n;x2++){
for(int y2=y1;y2<=m;y2++){
int res=pre[x2][y2]-pre[x1-1][y2]-pre[x2][y1-1]+pre[x1-1][y1-1];
if(res<=k)cnt++;
}
}
}
}
cout<<cnt;
return 0;
}
#include<iostream>
using namespace std;
typedef long long ll;
const int N = 5e2+3;
int n, m, k;
int a[N][N];
int main(){
ios::sync_with_stdio(false);
cin >> n >> m >> k;
for(int i=1; i<=n; i++){
for(int j=1; j<=m; j++){
cin >> a[i][j];
a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
}
}
ll ans = 0;
for(int i=1; i<=m; i++){
for(int j=i; j<=m; j++){
for(int s = 1, t = 1; t <= n; t ++ ){//s是慢指针 t是快指针
while(s <= t && a[t][j] - a[s - 1][j] - a[t][i - 1] + a[s - 1][i - 1] > k) s ++ ;
if(s <= t) ans += t - s + 1;
}
}
}
cout << ans << '\n';
}
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=1007;
int a[N][N];
int pre[N][N];
int cnt=0;
signed main(){
int n,m,k;cin>>n>>m>>k;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>a[i][j];
a[i][j]+=a[i-1][j];//每一列进行前缀和了
}
}
// for(int i=1;i<=n;i++){//左边界
// for(int j=i;j<=m;j++){//右边界
// for(int s=1,f=1;f<=n;f++){//快慢指针
// }
// }
// }
for(int i=1;i<=n;i++){//上边界
for(int j=i;j<=n;j++){//下边界
for(int l=1,r=1,sum=0;r<=m;r++){//左右指针
sum+=a[j][r]-a[i-1][r];//第r列的[i,j]行的和
while(sum>k){//如果超过了就移动左指针
sum-=a[j][l]-a[i-1][l];
l++;
}
cnt+=r-l+1;
}
}
}
cout<<cnt;
return 0;
}