基于美洲狮优化算法(Puma Optimizar Algorithm ,POA)的无人机三维路径规划(提供MATLAB代码)

时间:2024-03-17 18:44:31

一、无人机路径规划模型介绍

无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。

二、算法介绍

美洲狮优化算法(Puma Optimizar Algorithm ,POA)由Benyamin Abdollahzadeh等人于2024年提出,其灵感来自美洲狮的智慧和生活。在该算法中,在探索和开发的每个阶段都提出了独特而强大的机制,这提高了算法对各种优化问题的性能。此外,该算法还提出了一种新型的智能机制,即相变的超启发式机制(PI),使用这种机制,PO算法可以在优化操作期间执行相变操作,并平衡探索和开发,同时探索和开发都会根据问题的性质自动调整。2024最新算法:美洲狮优化算法(Puma Optimizar Algorithm ,POA)求解23个基准函数(提供MATLAB代码)-CSDN博客

参考文献:

[1]Abdollahzadeh, B., Khodadadi, N., Barshandeh, S. et al. Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Comput (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning | Cluster Computing

close all
clear
clc
dbstop if all error
warning ('off')
global model
model = CreateModel(); % 创建模型
F='F1';
[Xmin,Xmax,dim,fobj] = fun_info(F);%获取函数信息
pop=100;%种群大小(可以自己修改)
maxgen=100;%最大迭代次数(可以自己修改)
[fMin5,bestX5,ConvergenceCurve5] = POA(pop, maxgen,Xmin,Xmax,dim,fobj);
cost=MyCost(bestX5,2);%'路径成本','威胁成本','高度成本','转角成本'
%% 计算航迹坐标
BestPosition5 = SphericalToCart(bestX5);
%% 保存各算法的目标函数值及收敛曲线
save fMin5 fMin5
save ConvergenceCurve5 ConvergenceCurve5
save cost cost
%% 保存航迹坐标
save BestPosition5 BestPosition5 

三、部分结果

四、完整MATLAB代码