分布式寻址:Hash取模与一致性Hash算法

时间:2024-03-16 14:51:35

hash取模原理:

其中key 代表数据的键,代表memcached服务器的数量。取模的结果就是memcached客户端要定位的memcached服务器。取模算法很明显,结果很容易受N的影响,当服务器数量N增加或者减少的时候,原先的缓存数据定位几乎失效,缓存数据定位失效意味着要到数据库重新查询,这对于高并发的系统来说是致命的。于是,人们提出了一致性hash算法,最终目的是实现在移除、添加一个memcached服务器时对已经存在的缓存数据的定位影响尽可能的降到最小。

一致性 hash 算法:

一致性 hash 算法将整个 hash 值空间组织成一个虚拟的圆环,整个空间按顺时针方向组织,下一步将各个 master 节点(使用服务器的 ip 或主机名)进行 hash。这样就能确定每个节点在其哈希环上的位置。
来了一个 key,首先计算 hash 值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,遇到的第一个 master 节点就是 key 所在位置。
在一致性哈希算法中,如果一个节点挂了,受影响的数据仅仅是此节点到环空间前一个节点(沿着逆时针方向行走遇到的第一个节点)之间的数据,其它不受影响。增加一个节点也同理。

然而,一致性哈希算法在节点太少时,容易因为节点分布不均匀而造成缓存热点的问题。为了解决这种热点问题,一致性 hash 算法引入了虚拟节点机制,即对每一个节点计算多个 hash,每个计算结果位置都放置一个虚拟节点。这样就实现了数据的均匀分布,负载均衡。

分布式寻址:Hash取模与一致性Hash算法

分布式寻址:Hash取模与一致性Hash算法
分布式寻址:Hash取模与一致性Hash算法