Hadoop学习笔记:HDFS理论知识

时间:2024-03-15 07:55:32

HDFS介绍

HDFS是hadoop自带的分布式文件系统,英文名为:Hadoop Distributed Filesystem,HDFS以流式数据访问模式来存储超大文件。

分布式文件系统的结构

分布式文件系统在物理结构上是由计算机集群中的多个节点构成的,这些节点分为两类,一类叫“主节点”(Master Node)或者也被称为“名称结点”(NameNode),另一类叫“从节点”(Slave Node)或者也被称为“数据节点”(DataNode)
Hadoop学习笔记:HDFS理论知识

HDFS主要组件的功能

NameNode DataNode
存储元数据 存储文件内容
元数据保存在内存中 文件内容保存在磁盘中
保存文件,block,datanode之间的映射关系 维护了block id到datanode本地文件爱的映射关系

名称节点(NameNode)

  • 在HDFS中,名称节点(NameNode)负责管理分布式文件系统的命名空(Namespace)保存了两个核心的数据结构,即FsImage和EditLog
    • FsImage用于维护文件系统树以及文件树中所有的文件和文件夹的元数据
    • 操作日志文件EditLog中记录了所有针对文件的创建、删除、重命名等操作
  • 名称节点记录了每个文件中各个块所在的数据节点的位置信息

Hadoop学习笔记:HDFS理论知识

SecondaryNameNode第二名称节点

第二名称节点是HDFS架构中的一个组成部分,它是用来保存名称节点中对HDFS 元数据信息的备份,并减少名称节点重启的时间。SecondaryNameNode一般是单独运行在一台机器上

数据节点(DataNode)

  • 数据节点是分布式文件系统HDFS的工作节点,负责数据的存储和读取,会根据客户端或者是名称节点的调度来进行数据的存储和检索,并且向名称节点定期发送自己所存储的块的列表
  • 每个数据节点中的数据会被保存在各自节点的本地Linux文件系统中

HDFS体系结构的局限性

HDFS只设置唯一一个名称节点,这样做虽然大大简化了系统设计,但也带来了一些明显的局限性,具体如下:
(1)命名空间的限制:名称节点是保存在内存中的,因此,名称节点能够容纳的对象(文件、块)的个数会受到内存空间大小的限制。
(2)性能的瓶颈:整个分布式文件系统的吞吐量,受限于单个名称节点的吞吐量。
(3)隔离问题:由于集群中只有一个名称节点,只有一个命名空间,因此,无法对不同应用程序进行隔离。
(4)集群的可用性:一旦这个唯一的名称节点发生故障,会导致整个集群变得不可用。