【spark operator】spark operator动态分配executor

时间:2024-03-12 15:51:12

背景:

之前在使用spark operator的时候必须指定executor的个数,在将任务发布到spark operator后,k8s会根据指定的个数启动executor,但是对于某些spark sql可能并不需要用到那么多executor,在此时executor的数量就不好控制了。而executor的多少代表了集群资源的多少,如果不提前指定,executor能够动态扩展那将是最好的策略。在查询了资料后,得知spark3.0已经支持了executor的动态分配。而且用法也很简单,所以在之前的spark operator发布k8s的基础上,又做了动态生成executor的功能。

本文参考之前一篇的文章,做了部分修改以支持该功能。

【Java Kubernates】Java调用kubernates提交Yaml到SparkOperator-CSDN博客文章浏览阅读1.1k次,点赞18次,收藏18次。最终我选择了fabric8io,因为我们需要使用k8s的自定义资源sparkApplication,对于自定义资源,kubernetes-client/java需要创建各个k8s对象的pojo,比较麻烦。这里提一下,我在重新使用spark operator的时候,发现原来官方的google的spark operator镜像已经不能拉取了,貌似是google发现它的两个镜像存在漏洞,所以关闭了开源镜像。目前查询框架使用的是trino,但是trino也有其局限性,需要准备一个备用的查询框架。https://blog.csdn.net/w8998036/article/details/135821058?spm=1001.2014.3001.5501

一 删除yaml中executor指定个数的配置

//测试spark 3.0的动态分配instance
	private static String buildSparkApplicationYAMLDynamic(String taskName, String sparkImage, String sparkJarFile, String mainClass, String instance,
			String driverCpu, String driverMemory, String executorCpu, String executorMemory, String dynamicSQLQuery) {
		
        return String.format(
                "apiVersion: \"sparkoperator.k8s.io/v1beta2\"\n" +
                "kind: SparkApplication\n" +
                "metadata:\n" +
                "  name: %s\n" +
                "  namespace: spark-app\n" +
                "spec:\n" +
                "  type: Scala\n" +
                "  mode: cluster\n" +
                "  image: \"%s\"\n" +
                "  imagePullPolicy: Always\n" +
                "  imagePullSecrets: [\"harbor\"]\n" +
                "  mainClass: \"%s\"\n" +
                "  mainApplicationFile: \"%s\"\n" +
                "  sparkVersion: \"3.3.1\"\n" +
                "  restartPolicy:\n" +
                "    type: Never\n" +
				"  volumes:\n" +
				"    - name: nfs-spark-volume\n" +
				"      persistentVolumeClaim:\n" +
				"        claimName: sparkcode\n" +
                
                "  driver:\n" +
                "    cores: %s\n" +
                "    coreLimit: \"1200m\"\n" +
                "    memory: \"%s\"\n" +
                "    labels:\n" +
                "      version: 3.3.1\n" +
                "    serviceAccount: spark-svc-account\n" +
                "    volumeMounts:\n" +
                "      - name: nfs-spark-volume\n" +
                "        mountPath: \"/app/sparkcode\"\n" +
                "    env:\n" +
                "      - name: AWS_REGION\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: AWS_REGION\n" +
                "      - name: AWS_ACCESS_KEY_ID\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: AWS_ACCESS_KEY_ID\n" +
                "      - name: AWS_SECRET_ACCESS_KEY\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: AWS_SECRET_ACCESS_KEY\n" +
                "      - name: MINIO_ENDPOINT\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: MINIO_ENDPOINT\n" +
                "      - name: MINIO_HOST\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: MINIO_HOST\n" +
                "      - name: BUCKET_NAME\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: BUCKET_NAME\n" +
                "  executor:\n" +
                "    cores: %s\n" +
############去除该配置#############################################################
                //"    instances: %s\n" +
##################################################################################
                "    memory: \"%s\"\n" +
                "    labels:\n" +
                "      version: 3.3.1\n" +
                "    volumeMounts:\n" +
                "      - name: nfs-spark-volume\n" +
                "        mountPath: \"/app/sparkcode\"\n" +
                "    env:\n" +
                "      - name: AWS_REGION\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: AWS_REGION\n" +
                "      - name: AWS_ACCESS_KEY_ID\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: AWS_ACCESS_KEY_ID\n" +
                "      - name: AWS_SECRET_ACCESS_KEY\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: AWS_SECRET_ACCESS_KEY\n" +
                "      - name: MINIO_ENDPOINT\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: MINIO_ENDPOINT\n" +
                "      - name: MINIO_HOST\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: MINIO_HOST\n" +
                "      - name: BUCKET_NAME\n" +
                "        valueFrom:\n" +
                "          secretKeyRef:\n" +
                "            name: minio-secret\n" +
                "            key: BUCKET_NAME\n" +
                "  sparkConf:\n" +
                "    spark.query.sql: \"%s\"",
                taskName,sparkImage,mainClass,sparkJarFile,driverCpu,driverMemory,executorCpu,executorMemory,dynamicSQLQuery
        );
    }

二 配置动态参数

//测试spark3.0 动态分配executor的instance
	public static void sparkQueryForFhcS3DynamicExecutor() throws Exception{
        System.out.println("=========================1");
        String warehouseLocation = new File("spark-warehouse").getAbsolutePath();
        System.out.println("===========================2");
        String metastoreUri = "thrift://wuxdihadl09b.seagate.com:9083";
        
        SparkConf sparkConf = new SparkConf();
        sparkConf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem");
        sparkConf.set("fs.s3a.access.key", "apPeWWr5KpXkzEW2jNKW");
        sparkConf.set("spark.hadoop.fs.s3a.path.style.access", "true");
        sparkConf.set("spark.hadoop.fs.s3a.connection.ssl.enabled", "true");
        sparkConf.set("fs.s3a.secret.key", "cRt3inWAhDYtuzsDnKGLGg9EJSbJ083ekuW7PejM");
        sparkConf.set("fs.s3a.endpoint", "wuxdimiov001.seagate.com:9000"); // 替换为实际的 S3 存储的地址
        sparkConf.set("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem");
        sparkConf.set("spark.sql.metastore.uris", metastoreUri);
        
        sparkConf.set("spark.sql.warehouse.dir", warehouseLocation);
        sparkConf.set("spark.sql.catalogImplementation", "hive");
        sparkConf.set("hive.metastore.uris", metastoreUri);


#####################################################添加动态参数#######################        
        
        //#总开关,是否开启动态资源配置,根据工作负载来衡量是否应该增加或减少executor,默认false
        sparkConf.set("spark.dynamicAllocation.enabled", "true");
        //#spark3新增,之前没有官方支持的on k8s的Dynamic Resouce Allocation。启用shuffle文件跟踪,此配置不会回收保存了shuffle数据的executor
        sparkConf.set("spark.dynamicAllocation.shuffleTracking.enabled", "true");
        //#启用shuffleTracking时控制保存shuffle数据的executor超时时间,默认使用GC垃圾回收控制释放。如果有时候GC不及时,配置此参数后,即使executor上存在shuffle数据,也会被回收。
        sparkConf.set("spark.dynamicAllocation.shuffleTracking.timeout", "60s");
        //#动态分配最小executor个数,在启动时就申请好的,默认0
        sparkConf.set("spark.dynamicAllocation.minExecutors", "1");
        //#动态分配最大executor个数,默认infinity
        sparkConf.set("spark.dynamicAllocation.maxExecutors", "10");
        //#动态分配初始executor个数默认值=spark.dynamicAllocation.minExecutors
        sparkConf.set("spark.dynamicAllocation.initialExecutors", "2");
        //#当某个executor空闲超过这个设定值,就会被kill,默认60s
        sparkConf.set("spark.dynamicAllocation.executorIdleTimeout", "60s");
        //#当某个缓存数据的executor空闲时间超过这个设定值,就会被kill,默认infinity
        sparkConf.set("spark.dynamicAllocation.cachedExecutorIdleTimeout", "240s");
        //#任务队列非空,资源不够,申请executor的时间间隔,默认1s(第一次申请)
        sparkConf.set("spark.dynamicAllocation.schedulerBacklogTimeout", "3s");
        //#同schedulerBacklogTimeout,是申请了新executor之后继续申请的间隔,默认=schedulerBacklogTimeout(第二次及之后)
        sparkConf.set("spark.dynamicAllocation.sustainedSchedulerBacklogTimeout", "30s");
        //#开启推测执行,对长尾task,会在其他executor上启动相同task,先运行结束的作为结果
        sparkConf.set("spark.specution", "true");
 #######################################################################################       
        

        //Class.forName("org.apache.hadoop.fs.s3a.S3AFileSystem");
        
        
        long zhenyang2 =  System.currentTimeMillis();
        SparkSession sparkSession = SparkSession.builder()
					        		.appName("Fhc Spark Query")
									.config(sparkConf)
									.enableHiveSupport()
					        		.getOrCreate();
        
        System.out.println("sparkSession create cost:"+(System.currentTimeMillis()-zhenyang2));
        System.out.println("==============================3");
        
        // 获取 SparkConf 对象
        
        
        String exesql = sparkSession.sparkContext().getConf().get("spark.query.sql");
        
        
        System.out.println("==============================3.1:"+exesql);
        
        System.out.println("Hive Metastore URI: " + sparkConf.get("spark.sql.metastore.uris"));
        System.out.println("Hive Warehouse Directory: " + sparkConf.get("spark.sql.warehouse.dir"));
        
        System.out.println("SHOW DATABASES==============================3.1:"+exesql);
        sparkSession.sql("SHOW DATABASES").show();
        
        long zhenyang3 =  System.currentTimeMillis();
        Dataset<Row> sqlDF = sparkSession.sql(exesql);
        System.out.println("sparkSession sql:"+(System.currentTimeMillis()-zhenyang3));
        
        System.out.println("======================4");
        //System.out.println("===========sqlDF count===========:"+sqlDF.count());
        
        //sqlDF.show();
        
        long zhenyang5 =  System.currentTimeMillis();
        List<Row> jaList= sqlDF.javaRDD().collect();
        System.out.println("rdd collect cost:"+(System.currentTimeMillis()-zhenyang5));
        System.out.println("jaList list:"+jaList.size());
        
        List<TaskListModel> list = new ArrayList<TaskListModel>();
        long zhenyang4 =  System.currentTimeMillis();
        AtomicInteger i = new AtomicInteger(0);
        jaList.stream().forEachOrdered(result -> {
        	i.incrementAndGet();
        	//System.out.println("serial_num is :"+result.getString(1));
        });
        System.out.println("for each times:"+i.get());
        
        System.out.println("SparkDemo foreach cost:"+(System.currentTimeMillis()-zhenyang4));
        
        System.out.println("=========================5");

        sparkSession.close();
        
        sparkSession.stop();
	}

三 发布一,二中的程序(逻辑见前面的博客文章)

四 测试

首先提交一个简单sql: select * from cimarronbp_n.p_vbar_metric_summary limit 10

查看k8s spark operator生成的pod

根据pod启动的时间可以看出,先生成了2个executor,在16s后又生成了1个,最后完成,可以看出executor确实根据任务的执行情况动态生成了。而之前文章中的executor 20个是同一时间生成的

再测试一个join的sql

select distinct t1.serial_num,t1.trans_seq,t2.state_name,t2.p_vbar_metric_summary,t1.event_date from cimarronbp_n.p_vbar_metric_summary t1 left join cimarronbp_n.p_vbar_metric_summary t2 on t1.serial_num = t2.serial_num AND t1.trans_seq = t2.trans_seq where t1.event_date='20231204' and t1.family='2TJ' and t1.operation='CAL2'

查看k8s spark operator生成的pod

executor从2个到3个,3个到4个,是动态的!

五 本文参考链接

「Spark从精通到重新入门(二)」Spark中不可不知的动态资源分配-阿里云开发者社区资源是影响 Spark 应用执行效率的一个重要因素。Spark 应用中真正执行 task 的组件是 Executor,可以通过spark.executor.instances 指定 Spark 应用的 Executor 的数量。在运行过程中,无论 Executor上是否有 task 在执行,都会被一直占有直到此 Spark 应用结束。https://developer.aliyun.com/article/832482