Let's say I have an numpy array A of size n x m x k and another array B of size n x m that has indices from 1 to k. I want to access each n x m slice of A using the index given at this place in B, giving me an array of size n x m.
假设我有一个大小为n x m x k的numpy数组A和另一个大小为n x m的数组B,其索引从1到k。我想使用B中这个地方给出的索引访问每个n x m切片的A,给我一个大小为n x m的数组。
Edit: that is apparently not what I want! [[ I can achieve this using take
like this:
编辑:这显然不是我想要的! [[我可以用这样的方式实现这个目的:
A.take(B)
]] end edit
A.take(B)]]结束编辑
Can this be achieved using fancy indexing? I would have thought A[B]
would give the same result, but that results in an array of size n x m x m x k (which I don't really understand).
这可以通过花式索引来实现吗?我原以为A [B]会给出相同的结果,但是会产生一个大小为n x m x m x k的数组(我真的不明白)。
The reason I don't want to use take
is that I want to be able to assign this portion something, like
我不想使用take的原因是我希望能够分配这个部分,比如
A[B] = 1
A [B] = 1
The only working solution that I have so far is
到目前为止,唯一可行的解决方案是
A.reshape(-1, k)[np.arange(n * m), B.ravel()].reshape(n, m)
A.reshape(-1,k)[np.arange(n * m),B.ravel()]。reshape(n,m)
but surely there has to be an easier way?
但肯定有一个更简单的方法吗?
1 个解决方案
#1
3
Suppose
import numpy as np
np.random.seed(0)
n,m,k = 2,3,5
A = np.arange(n*m*k,0,-1).reshape((n,m,k))
print(A)
# [[[30 29 28 27 26]
# [25 24 23 22 21]
# [20 19 18 17 16]]
# [[15 14 13 12 11]
# [10 9 8 7 6]
# [ 5 4 3 2 1]]]
B = np.random.randint(k, size=(n,m))
print(B)
# [[4 0 3]
# [3 3 1]]
To create this array,
要创建此数组,
print(A.reshape(-1, k)[np.arange(n * m), B.ravel()])
# [26 25 17 12 7 4]
as a nxm
array using fancy indexing:
作为使用花式索引的nxm数组:
i,j = np.ogrid[0:n, 0:m]
print(A[i, j, B])
# [[26 25 17]
# [12 7 4]]
#1
3
Suppose
import numpy as np
np.random.seed(0)
n,m,k = 2,3,5
A = np.arange(n*m*k,0,-1).reshape((n,m,k))
print(A)
# [[[30 29 28 27 26]
# [25 24 23 22 21]
# [20 19 18 17 16]]
# [[15 14 13 12 11]
# [10 9 8 7 6]
# [ 5 4 3 2 1]]]
B = np.random.randint(k, size=(n,m))
print(B)
# [[4 0 3]
# [3 3 1]]
To create this array,
要创建此数组,
print(A.reshape(-1, k)[np.arange(n * m), B.ravel()])
# [26 25 17 12 7 4]
as a nxm
array using fancy indexing:
作为使用花式索引的nxm数组:
i,j = np.ogrid[0:n, 0:m]
print(A[i, j, B])
# [[26 25 17]
# [12 7 4]]