numpy.zeros
-
Return a new array of given shape and type, filled with zeros.
Parameters: shape : int or sequence of ints
Shape of the new array, e.g., (2, 3) or 2.
dtype : data-type, optional
The desired data-type for the array, e.g., numpy.int8. Default is numpy.float64.
order : {‘C’, ‘F’}, optional
Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory.
Returns: out : ndarray
Array of zeros with the given shape, dtype, and order.
See also
- zeros_like
- Return an array of zeros with shape and type of input.
- ones_like
- Return an array of ones with shape and type of input.
- empty_like
- Return an empty array with shape and type of input.
- ones
- Return a new array setting values to one.
- empty
- Return a new uninitialized array.
Examples
>>> np.zeros(5) array([ 0., 0., 0., 0., 0.])
>>> np.zeros((5,), dtype=np.int) array([0, 0, 0, 0, 0])
>>> np.zeros((2, 1)) array([[ 0.], [ 0.]])
>>> s = (2,2) >>> np.zeros(s) array([[ 0., 0.], [ 0., 0.]])
>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype array([(0, 0), (0, 0)], dtype=[('x', '<i4'), ('y', '<i4')])