上下文切换的精确定义可以参考: http://www.linfo.org/context_switch.html. 下面做个简单的介绍. 多任务系统往往需要同时执行多道作业.作业数往往大于机器的CPU数, 然而一颗CPU同时只能执行一项任务, 如何让用户感觉这些任务正在同时进行呢? 操作系统的设计者巧妙地利用了时间片轮转的方式, CPU给每个任务都服务一定的时间, 然后把当前任务的状态保存下来, 在加载下一任务的状态后, 继续服务下一任务. 任务的状态保存及再加载, 这段过程就叫做上下文切换. 时间片轮转的方式使多个任务在同一颗CPU上执行变成了可能, 但同时也带来了保存现场和加载现场的直接消耗.
(Note. 更精确地说, 上下文切换会带来直接和间接两种因素影响程序性能的消耗. 直接消耗包括: CPU寄存器需要保存和加载, 系统调度器的代码需要执行, TLB实例需要重新加载, CPU 的pipeline需要刷掉; 间接消耗指的是多核的cache之间得共享数据, 间接消耗对于程序的影响要看线程工作区操作数据的大小).
在linux中可以使用vmstat观察上下文切换的次数. 执行命令如下:
$ vmstat 1
procs ———-memory———- —swap- —-io—- -system- —-cpu—-
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 0 4593944 453560 1118192 0 0 14 12 238 30 6 1 92 1
0 0 0 4593212 453568 1118816 0 0 0 96 958 1108 4 1 94 2
0 0 0 4593360 453568 1118456 0 0 0 0 895 1044 3 1 95 0
1 0 0 4593408 453568 1118456 0 0 0 0 929 1073 4 1 95 0
0 0 0 4593496 453568 1118456 0 0 0 0 1133 1363 6 1 93 0
0 0 0 4593568 453568 1118476 0 0 0 0 992 1190 4 1 95 0
vmstat 1指每秒统计一次, 其中cs列就是指上下文切换的数目. 一般情况下, 空闲系统的上下文切换每秒大概在1500以下.
对于我们经常使用的抢占式操作系统来说, 引起上下文切换的原因大概有以下几种: 1. 当前执行任务的时间片用完之后, 系统CPU正常调度下一个任务 2. 当前执行任务碰到IO阻塞, 调度器将挂起此任务, 继续下一任务 3. 多个任务抢占锁资源, 当前任务没有抢到,被调度器挂起, 继续下一任务 4. 用户代码挂起当前任务, 让出CPU时间 5. 硬件中断. 前段时间发现有人在使用futex的WAIT和WAKE来测试context switch的直接消耗(链接), 也有人使用阻塞IO来测试context switch的消耗(链接).那么Java程序怎么测试和观察上下文切换的消耗呢?
我做了一个小实验, 代码很简单, 有两个工作线程. 开始时,第一个线程挂起自己; 第二个线程唤醒第一个线程,再挂起自己; 第一个线程醒来之后唤醒第二个线程, 再挂起自己. 就这样一来一往,互相唤醒对方, 挂起自己. 代码如下:
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.LockSupport;
public final class ContextSwitchTest {
static final int RUNS = 3;
static final int ITERATES = 1000000;
static AtomicReference turn = new AtomicReference();
static final class WorkerThread extends Thread {
volatile Thread other;
volatile int nparks;
public void run() {
final AtomicReference t = turn;
final Thread other = this.other;
if (turn == null || other == null)
throw new NullPointerException();
int p = 0;
for (int i = 0; i < ITERATES; ++i) {
while (!t.compareAndSet(other, this)) {
LockSupport.park();
++p;
}
LockSupport.unpark(other);
}
LockSupport.unpark(other);
nparks = p;
System.out.println(“parks: ” + p);
}
}
static void test() throws Exception {
WorkerThread a = new WorkerThread();
WorkerThread b = new WorkerThread();
a.other = b;
b.other = a;
turn.set(a);
long startTime = System.nanoTime();
a.start();
b.start();
a.join();
b.join();
long endTime = System.nanoTime();
int parkNum = a.nparks + b.nparks;
System.out.println(“Average time: ” + ((endTime - startTime) / parkNum)
+ “ns”);
}
public static void main(String[] args) throws Exception {
for (int i = 0; i < RUNS; i++) {
test();
}
}
}
编译后,在我自己的笔记本上( Intel(R) Core(TM) i5 CPU M 460 @ 2.53GHz, 2 core, 3M L3 Cache) 用测试几轮,结果如下:
java -cp . ContextSwitchTest
parks: 953495
parks: 953485
Average time: 11373ns
parks: 936305
parks: 936302
Average time: 11975ns
parks: 965563
parks: 965560
Average time: 13261ns
我们会发现这么简单的for循环, 线性执行会非常快,不需要1秒, 而执行这段程序需要几十秒的耗时. 每个上下文切换需要耗去十几us的时间,这对于程序吞吐量的影响很大.
同时我们可以执行vmstat 1 观查一下上下文切换的频率是否变快
$ vmstat 1
procs ———-memory———- —swap- —-io—- -system- —-cpu—-
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 0 4424988 457964 1154912 0 0 13 12 252 80 6 1 92 1
0 0 0 4420452 457964 1159900 0 0 0 0 1586 2069 6 1 93 0
1 0 0 4407676 457964 1171552 0 0 0 0 1436 1883 8 3 89 0
1 0 0 4402916 457964 1172032 0 0 0 84 22982 45792 9 4 85 2
1 0 0 4416024 457964 1158912 0 0 0 0 95382 198544 17 10 73 0
1 1 0 4416096 457964 1158968 0 0 0 116 79973 159934 18 7 74 0
1 0 0 4420384 457964 1154776 0 0 0 0 96265 196076 15 10 74 1
1 0 0 4403012 457972 1171096 0 0 0 152 104321 213537 20 12 66 2
再使用strace观察以上程序中Unsafe.park()究竟是哪道系统调用造成了上下文切换:
$strace -f java -cp . ContextSwitchTest
[pid 5969] futex(0x9571a9c, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x9571a98, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
[pid 5968] <… futex resumed> ) = 0
[pid 5969] futex(0x9571ad4, FUTEX_WAIT_PRIVATE, 949, NULL
[pid 5968] futex(0×9564368, FUTEX_WAKE_PRIVATE, 1) = 0
[pid 5968] futex(0x9571ad4, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x9571ad0, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}
[pid 5969] <… futex resumed> ) = 0
[pid 5968] <… futex resumed> ) = 1
[pid 5969] futex(0×9571628, FUTEX_WAIT_PRIVATE, 2, NULL
果然还是futex.
再使用perf看看上下文对于Cache的影响:
$ perf stat -e cache-misses java -cp . ContextSwitchTest
parks: 999999
parks: 1000000
Average time: 16201ns
parks: 998930
parks: 998926
Average time: 14426ns
parks: 998034
parks: 998204
Average time: 14489ns
Performance counter stats for ‘java -cp . ContextSwitchTest’:
2,550,605 cache-misses
90.221827008 seconds time elapsed
1分半钟内有255万多次cache未命中.
嗯, 貌似太长了, 可以结束了. 接下来会继续几篇博文继续分析一些有意思的东西.
(1) 从Java视角看内存屏障 (Memory Barrier)
(2) 从java视角看CPU亲缘性 (CPU Affinity)
等..敬请关注
PS. 其实还做了一个实验, 测试CPU Affinity对于Context Switch的影响.
$ taskset -c 0 java -cp . ContextSwitchTest
parks: 992713
parks: 1000000
Average time: 2169ns
parks: 978428
parks: 1000000
Average time: 2196ns
parks: 989897
parks: 1000000
Average time: 2214ns
这个命令把进程绑定在0号CPU上,结果Context Switch的消耗小了一个数量级, 什么原因呢? 卖个关子, 在谈到CPU Affinity的博文再说
从Java视角理解CPU上下文切换(Context Switch)的更多相关文章
-
从Java视角理解CPU缓存(CPU Cache)
从Java视角理解系统结构连载, 关注我的微博(链接)了解最新动态众所周知, CPU是计算机的大脑, 它负责执行程序的指令; 内存负责存数据, 包括程序自身数据. 同样大家都知道, 内存比CPU慢很多 ...
-
从Java视角理解CPU缓存和伪共享
转载自:http://ifeve.com/from-javaeye-cpu-cache/ http://ifeve.com/from-javaeye-false-shari ...
-
如何理解CPU上下文切换(二)
如何理解CPU上下文切换(二) 1.引 你们好,可爱的小伙伴们.^_^ 多个进程竞争CPU就是一个经常被我们忽视的问题. 你们一定很好奇,进程在竞争CPU的时候并没有真正运行,为什么还会导致系统的负载 ...
-
操作系统重点双语阅读 - 上下文切换 Context Switch
The context is represented in the PCB of the process. It includes the value of the CPU registers, th ...
-
性能测试必备知识(5)- 深入理解“CPU 上下文切换”
做性能测试的必备知识系列,可以看下面链接的文章哦 https://www.cnblogs.com/poloyy/category/1806772.html 前言 上一篇文章中,举例了大量进程等待 CP ...
-
03讲基础篇:经常说的CPU上下文切换是什么意思(上)
小结 总结一下,不管是哪种场景导致的上下文切换,你都应该知道: CPU 上下文切换,是保证 Linux 系统正常工作的核心功能之一,一般情况下不需要我们特别关注. 但过多的上下文切换,会把CPU时间消 ...
-
【转】CPU上下文切换的次数和时间(context switch)
http://iamzhongyong.iteye.com/blog/1895728 什么是CPU上下文切换? 现在linux是大多基于抢占式,CPU给每个任务一定的服务时间,当时间片轮转的时候,需要 ...
-
CPU上下文切换的次数和时间(context switch)
什么是CPU上下文切换? 现在linux是大多基于抢占式,CPU给每个任务一定的服务时间,当时间片轮转的时候,需要把当前状态保存下来,同时加载下一个任务,这个过程叫做上下文切换.时间片轮转的方式,使得 ...
-
03 | 基础篇:经常说的 CPU 上下文切换是什么意思?(上)
上一节,我给你讲了要怎么理解平均负载( Load Average),并用三个案例展示了不同场景下平均负载升高的分析方法.这其中,多个进程竞争 CPU 就是一个经常被我们忽视的问题. 我想你一定很好奇, ...
随机推荐
-
[转]DbFirst数据验证
转自:Data Validate 之 Data Annotation 什么是Data Annotation ? 如何使用 ? 自定义Validate Attribute EF Db first中使用 ...
-
[NHibernate]延迟加载
目录 写在前面 文档与系列文章 延迟加载 一个例子 总结 写在前面 上篇文章介绍了多对多关系的关联查询的sql,HQL,Criteria查询的三种方式.本篇文章将介绍nhibernate中的延迟加载方 ...
-
每天一个linux命令(5):rm 命令
昨天学习了创建文件和目录的命令mkdir ,今天学习一下linux中删除文件和目录的命令: rm命令.rm是常用的命令,该命令的功能为删除一个目录中的一个或多个文件或目录,它也可以将某个目录及其下的所 ...
-
C++ map 映照容器
map映照容器的元素数据是一个键值和一个映照数据组成的,键值与映照数据之间具有一一映照的关系. map映照容器的数据结构是采用红黑树来实现的,插入键值的元素不允许重复,比较函数只对元素的键值进行比较, ...
-
解决IE下jquery ajax无法获得最新数据的问题(IE缓存)
今天修改一个bug,利用ajax查询数据,在谷歌浏览器下可以获取到最新数据,而在IE中获得是旧数据,无法获得最新的数据,经查资料,才发现时IE缓存再作怪. 发现此ajax请求用的get方式,每次请求的 ...
-
Ubuntu环境下配置Nginx
/etc/nginx目录文件下: drwxr-xr-x 5 root root 4096 Apr 27 12:47 ./ drwxr-xr-x 104 root root 4096 Apr 27 ...
-
linux 文件操作编程
Linux中所有的设备和文件的操作都使用文件描述符来进行. 文件描述符是一个非负的整数,它是一个索引值,指向内核中每个进程打开的记录表. 当打开一个文件或者创建一个新文件时,内核就向进程返回一个文件描 ...
-
委托与Lambda-浅谈
委托概述 委托是寻址方法的.NET版本. 在C++中,函数指针只不过是一个指向内存位置的指针,它不是类型安全的.我们无法判断这个指针实际指向什么,更不知晓像参数和返回类型等项了. 而.NET委托完全不 ...
-
教你使用破解无线路由器笔记本password
近期非常多人问我怎么破解WiFipassword…看来大家都对免费的东西比較有兴趣.要么也可能是我太招摇了…囧… 好吧,我就写篇小小的教程,看完后,你应该可以破解大部分无线路由器password了.写 ...
-
软件Scrum
软件海贼团 OnePiece (版权所有) 最近迷上了“海贼王”这部动画片,不仅仅是因为其中的人物个个性格鲜明,剧情跌宕起伏扣人心弦,各种耍宝搞笑,还感觉到这个团队很像理想中的敏捷软件团队. 作为一直 ...