多线程爬虫
爬取糗事百科
# 使用了线程库 import threading # 队列 from Queue import Queue # 解析库 from lxml import etree # 请求处理 import requests # json处理 import json import time class ThreadCrawl(threading.Thread): def __init__(self, threadName, pageQueue, dataQueue): #threading.Thread.__init__(self) # 调用父类初始化方法 super(ThreadCrawl, self).__init__() # 线程名 self.threadName = threadName # 页码队列 self.pageQueue = pageQueue # 数据队列 self.dataQueue = dataQueue # 请求报头 self.headers = {\'User-Agent\':\'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36\'} def run(self): print ("启动 " + self.threadName) while not CRAWL_EXIT: try: # 取出一个数字,先进先出 # 可选参数block,默认值为True #1. 如果对列为空,block为True的话,不会结束,会进入阻塞状态,直到队列有新的数据 #2. 如果队列为空,block为False的话,就弹出一个Queue.empty()异常, page = self.pageQueue.get(False) url = "http://www.qiushibaike.com/8hr/page/" + str(page) +"/" #print( url) content = requests.get(url, headers = self.headers).text time.sleep(1) self.dataQueue.put(content) #print (len(content)) except: pass print ("结束 " + self.threadName) class ThreadParse(threading.Thread): def __init__(self, threadName, dataQueue, filename, lock): super(ThreadParse, self).__init__() # 线程名 self.threadName = threadName # 数据队列 self.dataQueue = dataQueue # 保存解析后数据的文件名 self.filename = filename # 锁 self.lock = lock def run(self): print ("启动" + self.threadName) while not PARSE_EXIT: try: html = self.dataQueue.get(False) self.parse(html) except: pass print ("退出" + self.threadName) def parse(self, html): # 解析为HTML DOM html = etree.HTML(html) node_list = html.xpath(\'//div[contains(@id, "qiushi_tag")]\') for node in node_list: # xpath返回的列表,这个列表就这一个参数,用索引方式取出来,用户名 username = node.xpath(\'./div/a/@title\')[0] # 图片连接 image = node.xpath(\'.//div[@class="thumb"]//@src\')#[0] # 取出标签下的内容,段子内容 content = node.xpath(\'.//div[@class="content"]/span\')[0].text # 取出标签里包含的内容,点赞 zan = node.xpath(\'.//i\')[0].text # 评论 comments = node.xpath(\'.//i\')[1].text items = { "username" : username, "image" : image, "content" : content, "zan" : zan, "comments" : comments } # with 后面有两个必须执行的操作:__enter__ 和 _exit__ # 不管里面的操作结果如何,都会执行打开、关闭 # 打开锁、处理内容、释放锁 with self.lock: # 写入存储的解析后的数据 self.filename.write(json.dumps(items, ensure_ascii = False).encode("utf-8") + "\n") CRAWL_EXIT = False PARSE_EXIT = False def main(): # 页码的队列,表示20个页面 pageQueue = Queue(20) # 放入1~10的数字,先进先出 for i in range(1, 21): pageQueue.put(i) # 采集结果(每页的HTML源码)的数据队列,参数为空表示不限制 dataQueue = Queue() filename = open("duanzi.json", "a") # 创建锁 lock = threading.Lock() # 三个采集线程的名字 crawlList = ["采集线程1号", "采集线程2号", "采集线程3号"] # 存储三个采集线程的列表集合 threadcrawl = [] for threadName in crawlList: thread = ThreadCrawl(threadName, pageQueue, dataQueue) thread.start() threadcrawl.append(thread) # 三个解析线程的名字 parseList = ["解析线程1号","解析线程2号","解析线程3号"] # 存储三个解析线程 threadparse = [] for threadName in parseList: thread = ThreadParse(threadName, dataQueue, filename, lock) thread.start() threadparse.append(thread) # 等待pageQueue队列为空,也就是等待之前的操作执行完毕 while not pageQueue.empty(): pass # 如果pageQueue为空,采集线程退出循环 global CRAWL_EXIT CRAWL_EXIT = True print( "pageQueue为空") for thread in threadcrawl: thread.join() print ("1") while not dataQueue.empty(): pass global PARSE_EXIT PARSE_EXIT = True for thread in threadparse: thread.join() print ("2") with lock: # 关闭文件 filename.close() print ("谢谢使用!") if __name__ == "__main__": main()
使用多进程并关注返回结果 - multiprocessing
import multiprocessing import time def func(msg): print(\'hello :\', msg, time.ctime()) time.sleep(2) print(\'end\', time.ctime()) return \'done\' + msg if __name__ == \'__main__\': pool = multiprocessing.Pool(2) result = [] for i in range(3): msg = \'hello %s\' % i result.append(pool.apply_async(func=func, args=(msg,))) pool.close() pool.join() for res in result: print(\'***:\', res.get()) # get()函数得出每个返回结果的值 print(\'All end--\')
多进程执行多个函数 - multiprocessing.Pool
使用apply_async()或者apply()方法,可以实现多进程执行多个方法
import multiprocessing import time import os def Lee(): print(\'\nRun task Lee--%s******ppid:%s\' % (os.getpid(), os.getppid()), \'~~~~\', time.ctime()) start = time.time() time.sleep(5) end = time.time() print(\'Task Lee,runs %0.2f seconds.\' % (end - start), \'~~~~\', time.ctime()) def Marlon(): print("\nRun task Marlon-%s******ppid:%s" % (os.getpid(), os.getppid()), \'~~~~\', time.ctime()) start = time.time() time.sleep(10) end = time.time() print(\'Task Marlon runs %0.2f seconds.\' % (end - start), \'~~~~\', time.ctime()) def Allen(): print("\nRun task Allen-%s******ppid:%s" % (os.getpid(), os.getppid()), \'~~~~\', time.ctime()) start = time.time() time.sleep(15) end = time.time() print(\'Task Allen runs %0.2f seconds.\' % (end - start), \'~~~~\', time.ctime()) def Frank(): print("\nRun task Frank-%s******ppid:%s" % (os.getpid(), os.getppid()), \'~~~~\', time.ctime()) start = time.time() time.sleep(20) end = time.time() print(\'Task Frank runs %0.2f seconds.\' % (end - start), \'~~~~\', time.ctime()) if __name__ == \'__main__\': func_list = [Lee, Marlon, Allen, Frank] print(\'parent process id %s\' % os.getpid()) pool = multiprocessing.Pool(4) for func in func_list: pool.apply_async(func) print(\'Waiting for all subprocesses done...\') pool.close() pool.join() print(\'All subprocesses done.\')
参考链接: