高斯分布,也叫正态分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的宽度。当μ = 0,σ = 1时的正态分布是标准正态分布。
定义
---------以上摘自百度百科
import numpy as np import matplotlib.pyplot as plt import math def normal_distribution(x, mean, sigma): return np.exp(-1*((x-mean)**2)/(2*(sigma**2)))/(math.sqrt(2*np.pi) * sigma) mean1, sigma1 = 0, 1 x1 = np.linspace(mean1 - 6*sigma1, mean1 + 6*sigma1, 100) mean2, sigma2 = 0, 2 x2 = np.linspace(mean2 - 6*sigma2, mean2 + 6*sigma2, 100) mean3, sigma3 = 5, 1 x3 = np.linspace(mean3 - 6*sigma3, mean3 + 6*sigma3, 100) y1 = normal_distribution(x1, mean1, sigma1) y2 = normal_distribution(x2, mean2, sigma2) y3 = normal_distribution(x3, mean3, sigma3) plt.plot(x1, y1, \'r\', label=\'m=0,sig=1\') plt.plot(x2, y2, \'g\', label=\'m=0,sig=2\') plt.plot(x3, y3, \'b\', label=\'m=1,sig=1\') plt.legend() plt.grid() plt.show()