NSGA(非支配排序遗传算法)、NSGAII(带精英策略的非支配排序的遗传算法),都是基于遗传算法的多目标优化算法,都是基于pareto最优解讨论的多目标优化,遗传算法已经做过笔记,下面介绍pareto(帕累托)最优解的相关概念。本文是基于参考文献做的读书笔记。
1 NSGA算法
1.1 Paerot支配关系
1.2 Pareto最优解定义
多目标优化问题与单目标优化问题有很大差异。当只有一个目标函数时,人们寻找最好的解,这个解优于其他所有解,通常是全局最大或最小,即全局最优解。而当存在多个目标时,由于目标之间存在冲突无法比较,所以很难找到一个解使得所有的目标函数同时最优,也就是说,一个解可能对于某个目标函数是最好的,但对于其他的目标函数却不是最好的,甚至是最差的。因此,对于多目标优化问题,通常存在一个解集,这些解之间就全体目标函数而言是无法比较优劣的,其特点是:无法在改进任何目标函数的同时不削弱至少一个其他目标函数。这种解称作非支配解(nondominated soluitons)或Pareto最优解(Pareto optimal Soluitons),定义如下:
也即没有其他值可以支配Xu。
2、NSGA一般流程
NSGA采用的非支配分层方法,可以使好的个体有更大的机会遗传到下一代;适应度共享策略则使得准Pareto面上的个体均匀分布,保持了群体多样性,克服了超级个体的过度繁殖,防止了早熟收敛。流程图如下:
NSGA与简单的遗传算法的主要区别在于:该算法在选择算子执行之前根据个体之间的支配关系进行了分层。其选择算子、交叉算子和变异算子与简单遗传算法没有区别。
从图中可以看到,算法首先判断种群是否全部分级,如果已经全部分级,则在分级的基础上,使用基于拥挤策略的小生境(NIChe)技术对虚拟适应度值进行调整,并确定每个种群的虚拟适应度值,然后根据虚拟适应度值的大小,确定优先选择进行处理的种群(遗传算法)。
2.1 非支配排序
考虑一个目标函数个数为K(K>1)、规模大小为N的种群,通过非支配排序算法可以对该种群进行分层,具体的步骤如下:
通过上述步骤得到的非支配个体集是种群的第一级非支配层;然后,忽略这些标记的非支配个体,再遵循步骤(1)一(4),就会得到第二级非支配;依此类推,直到整个种群被分类。
2.2 虚拟适应度值的确定
在对种群进行非支配排序的过程中,需要给每一个非支配层指定一个虚拟适应度值。级数越大,虚拟适应度值越小;反之,虚拟适应度值越大。这样可以保证在选择操作中等级较低的非支配个体有更多的机会被选择进入下一代,使得算法以最快的速度收敛于最优区域。另一方面,为了得到分布均匀的Pareto最优解集,就要保证当前非支配层上的个体具有多样性。NSGA中引入了基于拥挤策略的小生境(NIChe)技术,即通过适应度共享函数的方法对原先指定的虚拟适应度值进行重新指定。
3、NSGAII算法
NSGA一II算法的基本思想为:首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;最后,通过遗传算法的基本操作产生新的子代种群:依此类推,直到满足程序结束的条件。相应的程序流程图如下图所示。
3.1 快速非支配排序算法
3.2 拥挤度和拥挤度比较算子
挤度是指种群中给定个体的周围个体的密度,直观上可表示为个体。周围仅仅包含个体。本身的最大长方形的长,用nd表示,
拥挤度的算法如下:
3.3拥挤度比较算子
3.3 两种算法对比及II代的改进:
非支配排序遗传算法(NSGA)在许多问题上得到了应用,但NSGA仍存在一些问题:
)a计算复杂度较高,为O(mN3)(m为目标函数个数,N为种群大小),所以当种群较大时,计算相当耗时。
b)没有精英策略;精英策略可以加速算法的执行速度,而且也能在一定程度上确保己经找到的满意解不被丢失。
)c需要指定共享半径。
而NSGA一II针对以上的缺陷通过以下三个方面进行了改进:
)a提出了快速非支配排序法,降低了算法的计算复杂度。由原来的O(mN3)降到O(mN2),其中,m为目标函数个数,N为种群大小。
b)提出了拥挤度和拥挤度比较算子,代替了需要指定共享半径的适应度共享策略,并在快速排序后的同级比较中作为胜出标准,使准Paroet域中的个体能扩展到整个Pareto域,并均匀分布,保持了种群的多样性。
)c引入精英策略,扩大采样空间。将父代种群与其产生的子代种群组合,共同竞争产生下一代种群,有利于保持父代中的优良个体进入下一代,并通过对种群中所有个体的分层存放,使得最佳个体不会丢失,迅速提高种群水平。
参考文献:
1、带精英策略的非支配排序遗传算法的研究与应用_郑强
2、非支配排序遗传算法_NSGA_的研究与应用_高媛