Python 多线程抓取图片效率对比

时间:2022-05-12 01:19:57

目的:

是学习python 多线程的工作原理,及通过抓取400张图片这种IO密集型应用来查看多线程效率对比

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import requests
import urlparse
import os
import time
import threading
import Queue
 
path = '/home/lidongwei/scrapy/owan_img_urls.txt'
#path = '/home/lidongwei/scrapy/cc.txt'
fetch_img_save_path = '/home/lidongwei/scrapy/owan_imgs/'
 
# 读取保存再文件里面400个urls
with open(path) as f :
  urls = f.readlines()
 
urls = urls[:400]
# 使用Queue来线程通信,因为队列是线程安全的(就是默认这个队列已经有锁)
q = Queue.Queue()
for url in urls:
  q.put(url)
 
start = time.time()
 
def fetch_img_func(q):
  while True:
    try:
      # 不阻塞的读取队列数据
      url = q.get_nowait()
      i = q.qsize()
    except Exception, e:
      print e
      break;
    print 'Current Thread Name Runing %s ... 11' % threading.currentThread().name
    url = url.strip()
    img_path = urlparse.urlparse(url).path
    ext = os.path.splitext(img_path)[1]
    print 'handle %s pic... pic url %s ' % (i, url)
    res = requests.get(url, stream=True)
 
    if res.status_code == 200:
      save_img_path = '%s%s%s' % (fetch_img_save_path, i, ext)
      # 保存下载的图片
      with open(save_img_path, 'wb') as fs:
        for chunk in res.iter_content(1024):
          fs.write(chunk)
        print 'save %s pic ' % i
 
# 可以开多个线程测试不同效果
t1 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_1")
#t2 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_2")
#t3 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_3")
#t4 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_4")
t1.start()
#t2.start()
#t3.start()
#t4.start()
t1.join()
#t2.join()
#t3.join()
#t4.join()
 
end = time.time()
print 'Done %s ' % (end-start)

实验结果

400图片

?
1
2
3
4
4线程 Done 12.443133831
3线程 Done 12.9201757908
2线程 Done 32.8628299236
1线程 Done 54.6115460396

总结

Python 自带GIL 大锁, 没有真正意义上的多线程并行执行。GIL 大锁会在线程阻塞的时候释放,此时等待的线程就可以激活工作,这样如此类推,大大提高IO阻塞型应用的效率。