深度学习与医学图像处理 案例学习1——Unet肺部分割(CT图像)

时间:2024-03-03 17:35:57

内容引用自https://www.kaggle.com/toregil/a-lung-u-net-in-keras?select=2d_masks.zip

#引入普通包

1 import os
2 import numpy as np 
3 import pandas as pd 4 import cv2 #后面用于图像放缩(插值)
5 import matplotlib.pyplot as plt
6 %matplotlib inline
7 from sklearn.model_selection import train_test_split #将总数据集分为训练集和测试集

#引入深度学习包

from keras.models import Model  #keras模型
from keras.layers import * #keras层
from keras.optimizers import Adam  #keras优化算法
from keras.regularizers import l2 #l2正则化
from keras.preprocessing.image import ImageDataGenerator #图像增强生成器
import keras.backend as K
from keras.callbacks import LearningRateScheduler, ModelCheckpoint

#导入图像文件并图像设置为指定大小

IMAGE_LIB = \'../input/2d_images/\'  #图片路径
MASK_LIB = \'../input/2d_masks/\'   #掩模路径
IMG_HEIGHT, IMG_WIDTH = 32, 32    #输入网络的图片大小
SEED=42   #随机种子
all_images = [x for x in sorted(os.listdir(IMAGE_LIB)) if x[-4:] == \'.tif\'] #图片名数组(格式tif)

x_data = np.empty((len(all_images), IMG_HEIGHT, IMG_WIDTH), dtype=\'float32\')  #图片数据开辟空间
for i, name in enumerate(all_images):  #导入图片数据
    im = cv2.imread(IMAGE_LIB + name, cv2.IMREAD_UNCHANGED).astype("int16").astype(\'float32\') #cv2.IMREAD_UNCHANGED 包括alpha通道
    im = cv2.resize(im, dsize=(IMG_WIDTH, IMG_HEIGHT), interpolation=cv2.INTER_LANCZOS4) #cv2. INTER_LANCZOS4,8x8像素邻域Lanczos插值
    im = (im - np.min(im)) / (np.max(im) - np.min(im)) #归一化
    x_data[i] = im

y_data = np.empty((len(all_images), IMG_HEIGHT, IMG_WIDTH), dtype=\'float32\') #掩模数据开辟空间
for i, name in enumerate(all_images): #导入掩模数据
    im = cv2.imread(MASK_LIB + name, cv2.IMREAD_UNCHANGED).astype(\'float32\')/255.
    im = cv2.resize(im, dsize=(IMG_WIDTH, IMG_HEIGHT), interpolation=cv2.INTER_NEAREST) #cv2.INTER_NEAREST,最近邻域插值
    y_data[i] = im

#显示图像及掩模

fig, ax = plt.subplots(1,2, figsize = (8,4)) #1行两列显示图像
ax[0].imshow(x_data[10], cmap=\'gray\')  #图像
ax[1].imshow(y_data[10], cmap=\'gray\')  #掩模
plt.show()

x_data = x_data[:,:,:,np.newaxis]  #喂入神经网络前需新增第四维度
y_data = y_data[:,:,:,np.newaxis]
x_train, x_val, y_train, y_val = train_test_split(x_data, y_data, test_size = 0.5) #按0.5的比例分割训练集和测试集

#定义标准——dice系数

def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)  #多维张量一维化
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)   #交叉部分1*1=1
    return (2. * intersection + K.epsilon()) / (K.sum(y_true_f) + K.sum(y_pred_f) + K.epsilon()) #2*(A交B)/(A+B) 当A=B时,该值为1

#模型

input_layer = Input(shape=x_train.shape[1:])  #shape=32,32,1
c1 = Conv2D(filters=8, kernel_size=(3,3), activation=\'relu\', padding=\'same\')(input_layer)  #shape=32,32,8
l = MaxPool2D(strides=(2,2))(c1)  #shape=16,16,8
c2 = Conv2D(filters=16, kernel_size=(3,3), activation=\'relu\', padding=\'same\')(l) #shape=16,16,16
l = MaxPool2D(strides=(2,2))(c2)   #shape=8,8,16
c3 = Conv2D(filters=32, kernel_size=(3,3), activation=\'relu\', padding=\'same\')(l)  #shape=8,8,32
l = MaxPool2D(strides=(2,2))(c3)   #shape=4,4,32
c4 = Conv2D(filters=32, kernel_size=(1,1), activation=\'relu\', padding=\'same\')(l)  #shape=4,4,32
l = concatenate([UpSampling2D(size=(2,2))(c4), c3], axis=-1)   #UpSampling2D上采样,shape=8,8,64
l = Conv2D(filters=32, kernel_size=(2,2), activation=\'relu\', padding=\'same\')(l) #shape=8,8,32
l = concatenate([UpSampling2D(size=(2,2))(l), c2], axis=-1) #上采样,shape=16,16,48
l = Conv2D(filters=24, kernel_size=(2,2), activation=\'relu\', padding=\'same\')(l) #shape=16,16,24
l = concatenate([UpSampling2D(size=(2,2))(l), c1], axis=-1) #上采样,shape=32,32,32
l = Conv2D(filters=16, kernel_size=(2,2), activation=\'relu\', padding=\'same\')(l) #shape=32,32,16
l = Conv2D(filters=64, kernel_size=(1,1), activation=\'relu\')(l) #shape=32,32,64
l = Dropout(0.5)(l) #shape=32,32,64
output_layer = Conv2D(filters=1, kernel_size=(1,1), activation=\'sigmoid\')(l)  #shape=32,32,1
                                                         
model = Model(input_layer, output_layer)

#模型参数数量

#数据增强器

def my_generator(x_train, y_train, batch_size):
    data_generator = ImageDataGenerator(
            width_shift_range=0.1,
            height_shift_range=0.1,
            rotation_range=10,
            zoom_range=0.1).flow(x_train, x_train, batch_size, seed=SEED)
    mask_generator = ImageDataGenerator(
            width_shift_range=0.1,
            height_shift_range=0.1,
            rotation_range=10,
            zoom_range=0.1).flow(y_train, y_train, batch_size, seed=SEED)
    while True:
        x_batch, _ = data_generator.next()
        y_batch, _ = mask_generator.next()
        yield x_batch, y_batch

#使用相同的随机种子得到增强的图像对应增强的掩模,显示一个小批量增强后的图像及掩模

image_batch, mask_batch = next(my_generator(x_train, y_train, 8))
fix, ax = plt.subplots(8,2, figsize=(8,20))
for i in range(8):
    ax[i,0].imshow(image_batch[i,:,:,0])
    ax[i,1].imshow(mask_batch[i,:,:,0])
plt.show()

#编译模型

model.compile(optimizer=Adam(2e-4), loss=\'binary_crossentropy\', metrics=[dice_coef]) #optimizer优化器,loss损失函数,metrics评价指标

#为模型条件检查点

weight_saver = ModelCheckpoint(\'lung.h5\', monitor=\'val_dice_coef\', save_best_only=True, save_weights_only=True)
#文件名,mnitor监视的值,save_best_only:当设置为True时,将只保存在验证集上性能最好的模型,save_weights_only:若设置为True,只保存模型权重,否则将保存整个模型

#自动调整学习率

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.8 ** x)

#训练

hist = model.fit_generator(my_generator(x_train, y_train, 8),
                           steps_per_epoch = 200,
                           validation_data = (x_val, y_val),
                           epochs=10, verbose=2,
                           callbacks = [weight_saver, annealer])
#generator:生成器函数
#steps_per_epoch:整数,当生成器返回steps_per_epoch次数据时计一个epoch结束,执行下一个epoch
#epochs:整数,数据迭代的轮数
#verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录

#结果

     

#评价

#model.load_weights(\'lung.h5\')  #使用最佳参数
plt.plot(hist.history[\'loss\'], color=\'b\')
plt.plot(hist.history[\'val_loss\'], color=\'r\')
plt.legend([\'train_loss\',\'val_loss\']) plt.show() plt.plot(hist.history[
\'dice_coef\'], color=\'b\') plt.plot(hist.history[\'val_dice_coef\'], color=\'r\')
plt.legend([\'train_dice_coef\',\'val_dice_coef\']) plt.show()

 

#测试

pre=model.predict(x_train[10].reshape(1,IMG_HEIGHT, IMG_WIDTH, 1))[0,:,:,0]

fig, ax = plt.subplots(1,3, figsize = (12,6))
ax[0].imshow(x_train[10],cmap=\'gray\')
ax[1].imshow(y_train[10],cmap=\'gray\')
ax[2].imshow(pre)

y_hat = model.predict(x_val)
fig, ax = plt.subplots(10,3,figsize=(12,30))
for i in range(10):   ax[i,
0].imshow(x_val[i,:,:,0], cmap=\'gray\')   ax[i,1].imshow(y_val[i,:,:,0])   ax[i,2].imshow(y_hat[i,:,:,0])

 

#讨论

深度学习得到的图像并非二值图像,每个像素点的值都是从0-1之间,实际上再小的数都大于0,因为网络的最后一层是sigmoid函数,dice系数的计算并不是想象中的交比并。

生成真正的预测掩模还需要一个阈值。

倒数第二幅图的分割明显有问题。

为什么测试集的dice系数总好于训练接的dice系数? 答:测试集的数据未经过增强

 

#数据分享:链接: https://pan.baidu.com/s/1xXlHwn7Ek4mjJlJ4OFkgaw 提取码: rd5y 

欢迎探讨、指教。