1. 创建Maven项目
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.wakedata</groupId>
<artifactId>code</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<encoding>UTF-8</encoding>
<spark.version>3.4.1</spark.version>
<scala.version>2.12.14</scala.version>
</properties>
<dependencies>
<!-- scala依赖 -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- spark core 即为spark内核 ,其他⾼级组件都要依赖spark core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
<build>
<!--scala待编译的文件目录-->
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<!--scala插件-->
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<!--<arg>-make:transitive</arg>--><!--scala2.11 netbean不支持这个参数-->
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<!--manven打包插件-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>reference.conf</resource>
</transformer>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>cn.itcast.rpc.Master</mainClass> <!--main方法-->
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
2.目录结构
3. 代码实现
package sparkCore
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/***
* 1. 创建SparkContext
* 2. 创建RDD
* 3. 调用RDD的Transformation算子
* 4. 调用Action
* 5. 释放资源
*/
object wordcount_01 {
def main(args: Array[String]): Unit = {
val conf:SparkConf = new SparkConf().setAppName("WordCount").setMaster("local")
//创建SparkContext,使⽤SparkContext来创建RDD
val sc: SparkContext = new SparkContext(conf)
//spark写Spark程序,就是对抽象的神奇的⼤集合【RDD】编程,调⽤它⾼度封装的API //使⽤SparkContext创建RDD
val lines: RDD[String] = sc.textFile("./data/words.txt")
//切分压平
val words: RDD[String] = lines.flatMap(_.split(" "))
将单词和⼀组合放在元组中
val wordsAndOne: RDD[(String, Int)] = words.map((_, 1))
//分组聚合,reduceByKey可以先局部聚合再全局聚合
val reduced: RDD[(String, Int)] = wordsAndOne.reduceByKey(_ + _)
//排序
val sorted: RDD[(String, Int)] = reduced.sortBy(_._2, false)
//打印结果
sorted.foreach(line => print(line))
//释放资源
sc.stop()
}
}
运行结果: