Code

时间:2024-03-01 13:37:22
int lengthOfLIS(vector<int>& nums) {
    int n = nums.size();
    vector<int> dp(n, 1);
    int maxLength = 1;
    
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
            if (nums[i] > nums[j]) {
                dp[i] = max(dp[i], dp[j] + 1);
            }
        }
        maxLength = max(maxLength, dp[i]);
    }
    
    return maxLength;
}

这样,通过动态规划算法,可以高效地找到给定数组中最长严格递增子序列的长度。
但是考虑到通过DP解的话时间复杂度为O(n*n),时间复杂度比较高。
因此我们可以通过贪心+二分查找的解法降低时间复杂度。

力扣官方题解如下:

在这里插入图片描述
在这里插入图片描述

Code

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int len = 1, n = (int)nums.size();
        if (n == 0) {
            return 0;
        }
        vector<int> d(n + 1, 0);
        d[len] = nums[0];
        for (int i = 1; i < n; ++i) {
            if (nums[i] > d[len]) {
                d[++len] = nums[i];
            } else {
                int l = 1, r = len, pos = 0; // 如果找不到说明所有的数都比 nums[i] 大,此时要更新 d[1],所以这里将 pos 设为 0
                while (l <= r) {
                    int mid = (l + r) >> 1;
                    if (d[mid] < nums[i]) {
                        pos = mid;
                        l = mid + 1;
                    } else {
                        r = mid - 1;
                    }
                }
                d[pos + 1] = nums[i];
            }
        }
        return len;
    }
};