计算机网络知识点

时间:2024-03-01 11:43:56

1、OSI TCP/IP 五层协议体系结构以及各层的协议

OSI分层 (7层):物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。 
TCP/IP分层(4层):网络接口层、 网际层、运输层、 应用层。 
五层协议 (5层):物理层、数据链路层、网络层、运输层、 应用层。

每一层的协议如下:

物理层:RJ45、CLOCK、IEEE802.3 (中继器,集线器,网关) 
数据链路:PPP、FR、HDLC、VLAN、MAC (网桥,交换机) 
网络层:IP、ICMP、ARP、RARP、OSPF、IPX、RIP、IGRP、 (路由器) 
传输层:TCP、UDP、SPX 
会话层:NFS、SQL、NETBIOS、RPC 
表示层:JPEG、MPEG、ASII 
应用层:FTP、DNS、Telnet、SMTP、HTTP、WWW、NFS

2、Http和Https的区别

  Http协议运行在TCP之上,明文传输,客户端与服务器端都无法验证对方的身份;Https是身披SSL(Secure Socket Layer)外壳的Http,运行于SSL上,SSL运行于TCP之上,是添加了加密和认证机制的HTTP。二者之间存在如下不同:

  • 端口不同:Http与Http使用不同的连接方式,用的端口也不一样,前者是80,后者是443;

  • 资源消耗:和HTTP通信相比,Https通信会由于加减密处理消耗更多的CPU和内存资源;

  • 开销:Https通信需要证书,而证书一般需要向认证机构购买; 

  Https的加密机制是一种共享密钥加密和公开密钥加密并用的混合加密机制。

3、HTTP的长连接和短连接

  HTTP的长连接和短连接本质上是TCP长连接和短连接。HTTP属于应用层协议.

  短连接:浏览器和服务器每进行一次HTTP操作,就建立一次连接,但任务结束就中断连接。

  长连接:当一个网页打开完成后,客户端和服务器之间用于传输HTTP数据的 TCP连接不会关闭,如果客户端再次访问这个服务器上的网页,会继续使用这一条已经建立的连接。Keep-Alive不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如Apache)中设定这个时间。实现长连接要客户端和服务端都支持长连接。

  TCP短连接: client向server发起连接请求,server接到请求,然后双方建立连接。client向server发送消息,server回应client,然后一次读写就完成了,这时候双方任何一个都可以发起close操作,不过一般都是client先发起 close操作.短连接一般只会在 client/server间传递一次读写操作

  TCP长连接: client向server发起连接,server接受client连接,双方建立连接。Client与server完成一次读写之后,它们之间的连接并不会主动关闭,后续的读写操作会继续使用这个连接。

4、Get与POST的区别

  GET与POST是我们常用的两种HTTP Method,二者之间的区别主要包括如下五个方面:

(1). 从功能上讲,GET一般用来从服务器上获取资源,POST一般用来更新服务器上的资源;

(2). 从REST服务角度上说,GET是幂等的,即读取同一个资源,总是得到相同的数据,而POST不是幂等的,因为每次请求对资源的改变并不是相同的;进一步地,GET不会改变服务器上的资源,而POST会对服务器资源进行改变;

(3). 从请求参数形式上看,GET请求的数据会附在URL之后,即将请求数据放置在HTTP报文的 请求头 中,以?分割URL和传输数据,参数之间以&相连。特别地,如果数据是英文字母/数字,原样发送;否则,会将其编码为 application/x-www-form-urlencoded MIME 字符串(如果是空格,转换为+,如果是中文/其他字符,则直接把字符串用BASE64加密,得出如:%E4%BD%A0%E5%A5%BD,其中%XX中的XX为该符号以16进制表示的ASCII);而POST请求会把提交的数据则放置在是HTTP请求报文的 请求体 中。

(4). 就安全性而言,POST的安全性要比GET的安全性高,因为GET请求提交的数据将明文出现在URL上,而且POST请求参数则被包装到请求体中,相对更安全。

(5). 从请求的大小看,GET请求的长度受限于浏览器或服务器对URL长度的限制,允许发送的数据量比较小,而POST请求则是没有大小限制的。

5、从输入网址到获得页面的过程

  (1). 浏览器查询 DNS,获取域名对应的IP地址:具体过程包括浏览器搜索自身的DNS缓存、搜索操作系统的DNS缓存、读取本地的Host文件和向本地DNS服务器进行查询等。对于向本地DNS服务器进行查询,如果要查询的域名包含在本地配置区域资源中,则返回解析结果给客户机,完成域名解析(此解析具有权威性);如果要查询的域名不由本地DNS服务器区域解析,但该服务器已缓存了此网址映射关系,则调用这个IP地址映射,完成域名解析(此解析不具有权威性)。如果本地域名服务器并未缓存该网址映射关系,那么将根据其设置发起递归查询或者迭代查询;

  (2). 浏览器获得域名对应的IP地址以后,浏览器向服务器请求建立链接,发起三次握手;

  (3). TCP/IP链接建立起来后,浏览器向服务器发送HTTP请求;

  (4). 服务器接收到这个请求,并根据路径参数映射到特定的请求处理器进行处理,并将处理结果及相应的视图返回给浏览器;

  (5). 浏览器解析并渲染视图,若遇到对js文件、css文件及图片等静态资源的引用,则重复上述步骤并向服务器请求这些资源;

  (6). 浏览器根据其请求到的资源、数据渲染页面,最终向用户呈现一个完整的页面。

6、Session、Cookie 与 Application

  Cookie和Session都是客户端与服务器之间保持状态的解决方案,具体来说,cookie机制采用的是在客户端保持状态的方案,而session机制采用的是在服务器端保持状态的方案。

(1). Cookie及其相关API

  Cookie实际上是一小段的文本信息。客户端请求服务器,如果服务器需要记录该用户状态,就使用response向客户端浏览器颁发一个Cookie,而客户端浏览器会把Cookie保存起来。当浏览器再请求该网站时,浏览器把请求的网址连同该Cookie一同提交给服务器,服务器检查该Cookie,以此来辨认用户状态。服务器还可以根据需要修改Cookie的内容。

(2). Session及其相关API

  同样地,会话状态也可以保存在服务器端。客户端请求服务器,如果服务器记录该用户状态,就获取Session来保存状态,这时,如果服务器已经为此客户端创建过session,服务器就按照sessionid把这个session检索出来使用;如果客户端请求不包含sessionid,则为此客户端创建一个session并且生成一个与此session相关联的sessionid,并将这个sessionid在本次响应中返回给客户端保存。保存这个sessionid的方式可以采用 cookie机制 ,这样在交互过程中浏览器可以自动的按照规则把这个标识发挥给服务器;若浏览器禁用Cookie的话,可以通过 URL重写机制 将sessionid传回服务器。

(3). Session 与 Cookie 的对比

  • 实现机制:Session的实现常常依赖于Cookie机制,通过Cookie机制回传SessionID;

  • 大小限制:Cookie有大小限制并且浏览器对每个站点也有cookie的个数限制,Session没有大小限制,理论上只与服务器的内存大小有关;

  • 安全性:Cookie存在安全隐患,通过拦截或本地文件找得到cookie后可以进行攻击,而Session由于保存在服务器端,相对更加安全;

  • 服务器资源消耗:Session是保存在服务器端上会存在一段时间才会消失,如果session过多会增加服务器的压力。

    Application(ServletContext):与一个Web应用程序相对应,为应用程序提供了一个全局的状态,所有客户都可以使用该状态。

(4). Application

  Application(Java Web中的ServletContext):与一个Web应用程序相对应,为应用程序提供了一个全局的状态,所有客户都可以使用该状态。

7、 常见状态码及原因短语

  HTTP请求结构: 请求方式 + 请求URI + 协议及其版本 
  HTTP响应结构: 状态码 + 原因短语 + 协议及其版本

  • 1×× : 请求处理中,请求已被接受,正在处理
  • 2×× : 请求成功,请求被成功处理 
    200 OK
  • 3×× : 重定向,要完成请求必须进行进一步处理 
    301 : 永久性转移 
    302 :暂时性转移 
    304 : 已缓存
  • 4×× : 客户端错误,请求不合法 
    400:Bad Request,请求有语法问题 
    403:拒绝请求 
    404:客户端所访问的页面不存在
  • 5×× : 服务器端错误,服务器不能处理合法请求 
    500 :服务器内部错误 
    503 : 服务不可用,稍等 

 

8、运输层协议与网络层协议的区别?

  网络层协议负责的是提供主机间的逻辑通信 
  运输层协议负责的是提供进程间的逻辑通信

9、数据链路层协议可能提供的服务?

成帧、链路访问、透明传输、可靠交付、流量控制、差错检测、差错纠正、半双工和全双工。最重要的是帧定界(成帧)、透明传输以及差错检测

10、三次握手与四次挥手

 (1). 三次握手(我要和你建立链接,你真的要和我建立链接么,我真的要和你建立链接,成功):

  • 第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。

  • 第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。

  • 第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。

                三次握手.png-12.4kB


 (2). 四次挥手(我要和你断开链接;好的,断吧。我也要和你断开链接;好的,断吧):

  • 第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。

  • 第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。此时TCP链接处于半关闭状态,即客户端已经没有要发送的数据了,但服务端若发送数据,则客户端仍要接收。

  • 第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。

  • 第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。

                四次挥手.png-12.6kB

补充:TCP确认应答和超时重发

传输过程
1)正常的数据传输

 

 

 

 

  当发送端将数据发出后,会等待对端的确认应答,如有确认应答,说明数据已经到达对端。则可以继续发送下一个数据包。

  如在图中,第一次发送一个初始序列号为1,长度为1000字节的数据包,当接收端收到数据包,查询数据包TCP首部中的序列号和数据长度,将自己的下一步应该接受的序列号作为确认应答(ACK)返回。就这样可以通过序列号和ACK实现可靠性传输。

  TCP数据长度并没有直接写入TCP首部。而是利用公式计算。

  TCP数据长度=IP首部中数据包长度-IP首部长度-TCP首部长度。

2)数据包丢失情况

  当数据包由主机A发出后,由于网络拥塞等原因丢失的话。 当数据包无法到达接收端主机B;

  此时ACK就开始起作用了。

  如果发送端主机A在一个特定的时间没有收到接收端主机B发来的确认应答。就会进行重发。就解决了数据包丢失问题。

 

 

 

 

3)确认应答(ACK)丢失

  未接收到ACK并不全意味着数据包丢失,还有可能是数据包发送过去了,但是ACK丢失了。这种情况也会导致发送端因为没有收到ACK而认为数据没有到达对端。

 

 

 

 

  由于主机B返回的确认应答因为网络拥塞等原因丢失了。主机A会等待一段时间。若在特定时间没有收到始终没有收到这个确认应答ACK。主机A就会对此数据包进行重发。此时,主机B将第二次发送已收 此数据的确认应答。由于主机B已经收到过1~1000的数据,当再有相同数据送达时,主机B就会丢弃。

  重复数据包识别和处理

  主机B会收到很多重复数据. 那么TCP协议需要能够识别出那些包是重复的包, 并且把重复的丢弃掉. 这时候我们可以利用前面提到的序列号, 就可以很容易做到去重的效果.。

  序列号即可以识别已经接受的数据,又可以判定是否需要接受。 
  接收方如果收到了重复的报文,将会丢弃重复的报文,但是必须发回确认信息,否则对方会再次发送。

  乱序处理

  TCP协议应当保证数据报按序到达接收方。如果接收方收到的数据报文没有错误,只是未按序号,这种现象如何处理呢? 
  TCP协议本身没有规定,而是由TCP协议的实现者自己去确定。通常有两种方法进行处理:一是对没有按序号到达的报文直接丢弃。二是将未按序号到达的数据包先放于缓冲区内,等待它前面的序号包到达后,再将它交给应用进程。 
  后一种方法将会提高系统的效率。例如,发送方连续发送了每个报文中100个字节的TCP数据报,其序号分别是1,101,201,…,701。假如其它7个数据报都收到了,而201这个数据报没有收到,则接收端应当对1和101这两个数据报进行确认,并将数据递交给相关的应用进程,301至701这5个数据报则应当放于缓冲区,等到201这个数据报到达后,然后按序将201至701这些数据报递交给相关应用进程,并对701数据报进行确认,确保了应用进程级的TCP数据的按序到达。

  超时时间确认

  超时是指在重发数据之前,等待确认应答到来的那个特定时间间隔。如果在超过这个时间间隔仍未收到ACK,发送端就进行数据包重发。

  那么, 超时的时间如何确定? 
  最理想的情况下, 找到一个最小的时间, 保证 “确认应答一定能在这个时间内返回”.但是这个时间的长短, 随着网络环境的不同, 是有差异的。如果超时时间设的太长, 会影响整体的重传效率;如果超时时间设的太短, 有可能会频繁发送重复的包。

  TCP为了保证无论在任何环境下都能比较高性能的通信, 因此会动态计算这个最大超时时间。 
Linux中(BSD Unix和Windows也是如此), 超时以500ms为一个单位进行控制, 每次判定超时重发的超时时间都是500ms的整数倍。如果重发一次之后, 仍然得不到应答, 等待 2*500ms 后再进行重传.如果仍然得不到应答, 等待 4*500ms 进行重传. 依次类推, 
以指数形式递增.累计到一定的重传次数, TCP认为网络或者对端主机出现异常, 强制关闭连接。并且通知应用通信异常强行终止。

11、TCP采用两次捂手可以么,为什么?

  为了防止 已失效的链接请求报文突然又传送到了服务端,因而产生错误。

  客户端发出的连接请求报文并未丢失,而是在某个网络节点长时间滞留了,以致延误到链接释放以后的某个时间才到达Server。这是,Server误以为这是Client发出的一个新的链接请求,于是就向客户端发送确认数据包,同意建立链接。若不采用“三次握手”,那么只要Server发出确认数据包,新的链接就建立了。由于client此时并未发出建立链接的请求,所以其不会理睬Server的确认,也不与Server通信;而这时Server一直在等待Client的请求,这样Server就白白浪费了一定的资源。若采用“三次握手”,在这种情况下,由于Server端没有收到来自客户端的确认,则就会知道Client并没有要求建立请求,就不会建立链接。

12、为什么TIME_WAIT状态还需要等2*MSL(Max SegmentLifetime,最大分段生存期)秒之后才能返回到CLOSED状态呢?

因为虽然双方都同意关闭连接了,而且握手的4个报文也都发送完毕,按理可以直接回到CLOSED状态(就好比从SYN_SENT状态到ESTABLISH状态那样),但是我们必须假想网络是不可靠的,你无法保证你最后发送的ACK报文一定会被对方收到,就是说对方处于LAST_ACK状态下的SOCKET可能会因为超时未收到ACK报文,而重发FIN报文,所以这个TIME_WAIT状态的作用就是用来重发可能丢失的ACK报文。

13、为什么要4次挥手?

TCP协议是一种面向连接的、可靠的、基于字节流的传输层通信协议,是一个全双工模式: 
1、当主机A确认发送完数据且知道B已经接受完了,想要关闭发送数据口(当然确认信号还是可以发),就会发FIN给主机B。

2、主机B收到A发送的FIN,表示收到了,就会发送ACK回复。

3、但这是B可能还在发送数据,没有想要关闭数据口的意思,所以FIN与ACK不是同时发送的,而是等到B数据发送完了,才会发送FIN给主机A。

4、A收到B发来的FIN,知道B的数据也发送完了,回复ACK, A等待2MSL以后,没有收到B传来的任何消息,知道B已经收到自己的ACK了,A就关闭链接,B也关闭链接了。 
确保数据能够完成传输。

14、如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75分钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

15、TCP协议如何来保证传输的可靠性

  TCP提供一种面向连接的、可靠的字节流服务。其中,面向连接意味着两个使用TCP的应用(通常是一个客户和一个服务器)在彼此交换数据之前必须先建立一个TCP连接。在一个TCP连接中,仅有两方进行彼此通信;而字节流服务意味着两个应用程序通过TCP链接交换8bit字节构成的字节流,TCP不在字节流中插入记录标识符。

  对于可靠性,TCP通过以下方式进行保证:

  • 数据包校验:目的是检测数据在传输过程中的任何变化,若校验出包有错,则丢弃报文段并且不给出响应,这时TCP发送数据端超时后会重发数据;

  • 对失序数据包重排序:既然TCP报文段作为IP数据报来传输,而IP数据报的到达可能会失序,因此TCP报文段的到达也可能会失序。TCP将对失序数据进行重新排序,然后才交给应用层;

  • 丢弃重复数据:对于重复数据,能够丢弃重复数据;

  • 应答机制:当TCP收到发自TCP连接另一端的数据,它将发送一个确认。这个确认不是立即发送,通常将推迟几分之一秒;

  • 超时重发:当TCP发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段;

  • 流量控制:TCP连接的每一方都有固定大小的缓冲空间。TCP的接收端只允许另一端发送接收端缓冲区所能接纳的数据,这可以防止较快主机致使较慢主机的缓冲区溢出,这就是流量控制。TCP使用的流量控制协议是可变大小的滑动窗口协议。

 

16、TCP与UDP的区别

  TCP (Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议,它们之间的区别包括:

  • TCP是面向连接的,UDP是无连接的;

  • TCP是可靠的,UDP是不可靠的;

  • TCP只支持点对点通信,UDP支持一对一、一对多、多对一、多对多的通信模式;

  • TCP是面向字节流的,UDP是面向报文的;

  • TCP有拥塞控制机制;UDP没有拥塞控制,适合媒体通信;

  • TCP首部开销(20个字节)比UDP的首部开销(8个字节)要大;

17、TCP的拥塞处理

  计算机网络中的带宽、交换结点中的缓存及处理机等都是网络的资源。在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就会变坏,这种情况就叫做拥塞。拥塞控制就是 防止过多的数据注入网络中,这样可以使网络中的路由器或链路不致过载。注意,拥塞控制和流量控制不同,前者是一个全局性的过程,而后者指点对点通信量的控制。拥塞控制的方法主要有以下四种:


1). 慢启动:不要一开始就发送大量的数据,先探测一下网络的拥塞程度,也就是说由小到大逐渐增加拥塞窗口的大小;


2). 拥塞避免:拥塞避免算法让拥塞窗口缓慢增长,即每经过一个往返时间RTT就把发送方的拥塞窗口cwnd加1,而不是加倍,这样拥塞窗口按线性规律缓慢增长。

          慢开始与拥塞避免.png-90.3kB


3). 快重传:快重传要求接收方在收到一个 失序的报文段 后就立即发出 重复确认(为的是使发送方及早知道有报文段没有到达对方)而不要等到自己发送数据时捎带确认。快重传算法规定,发送方只要一连收到三个重复确认就应当立即重传对方尚未收到的报文段,而不必继续等待设置的重传计时器时间到期。

          快重传.jpg-42.3kB


4). 快恢复:快重传配合使用的还有快恢复算法,当发送方连续收到三个重复确认时,就执行“乘法减小”算法,把ssthresh门限减半,但是接下去并不执行慢开始算法:因为如果网络出现拥塞的话就不会收到好几个重复的确认,所以发送方现在认为网络可能没有出现拥塞。所以此时不执行慢开始算法,而是将cwnd设置为ssthresh的大小,然后执行拥塞避免算法。

          快恢复.jpg-52.9kB

18、TCP和UDP分别对应的常见应用层协议

1). TCP对应的应用层协议

  • FTP:定义了文件传输协议,使用21端口。常说某某计算机开了FTP服务便是启动了文件传输服务。下载文件,上传主页,都要用到FTP服务。

  • Telnet:它是一种用于远程登陆的端口,用户可以以自己的身份远程连接到计算机上,通过这种端口可以提供一种基于DOS模式下的通信服务。如以前的BBS是-纯字符界面的,支持BBS的服务器将23端口打开,对外提供服务。

  • SMTP:定义了简单邮件传送协议,现在很多邮件服务器都用的是这个协议,用于发送邮件。如常见的免费邮件服务中用的就是这个邮件服务端口,所以在电子邮件设置-中常看到有这么SMTP端口设置这个栏,服务器开放的是25号端口。

  • POP3:它是和SMTP对应,POP3用于接收邮件。通常情况下,POP3协议所用的是110端口。也是说,只要你有相应的使用POP3协议的程序(例如Fo-xmail或Outlook),就可以不以Web方式登陆进邮箱界面,直接用邮件程序就可以收到邮件(如是163邮箱就没有必要先进入网易网站,再进入自己的邮-箱来收信)。

  • HTTP:从Web服务器传输超文本到本地浏览器的传送协议。


2). UDP对应的应用层协议

  • DNS:用于域名解析服务,将域名地址转换为IP地址。DNS用的是53号端口。

  • SNMP:简单网络管理协议,使用161号端口,是用来管理网络设备的。由于网络设备很多,无连接的服务就体现出其优势。

  • TFTP(Trival File Transfer Protocal):简单文件传输协议,该协议在熟知端口69上使用UDP服务。

19、网络层的ARP协议工作原理

1:首先,每个主机都会在自己的ARP缓冲区中建立一个ARP列表,以表示IP地址和MAC地址之间的对应关系。

2:当源主机要发送数据时,首先检查ARP列表中是否有对应IP地址的目的主机的MAC地址,如果有,则直接发送数据,如果没有,就向本网段的所有主机发送ARP数据包,该数据包包括的内容有:源主机IP地址,源主机MAC地址,目的主机的IP地址。

3:当本网络的所有主机收到该ARP数据包时,首先检查数据包中的IP地址是否是自己的IP地址,如果不是,则忽略该数据包,如果是,则首先从数据包中取出源主机的IP和MAC地址写入到ARP列表中,如果已经存在,则覆盖,然后将自己的MAC地址写入ARP响应包中,告诉源主机自己是它想要找的MAC地址。

4:源主机收到ARP响应包后。将目的主机的IP和MAC地址写入ARP列表,并利用此信息发送数据。如果源主机一直没有收到ARP响应数据包,表示ARP查询失败。 
广播发送ARP请求,单播发送ARP响应

 

20、ICMP协议:因特网控制报文协议。它是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息。

21、了解交换机、路由器、网关的概念,并知道各自的用途

1)交换机

在计算机网络系统中,交换机是针对共享工作模式的弱点而推出的。交换机拥有一条高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背 部总线上,当控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部 交换矩阵迅速将数据包传送到目的端口。目的MAC若不存在,交换机才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表 中。

交换机工作于OSI参考模型的第二层,即数据链路层。交换机内部的CPU会在每个端口成功连接时,通过ARP协议学习它的MAC地址,保存成一张 ARP表。在今后的通讯中,发往该MAC地址的数据包将仅送往其对应的端口,而不是所有的端口。因此,交换机可用于划分数据链路层广播,即冲突域;但它不 能划分网络层广播,即广播域。

交换机被广泛应用于二层网络交换,俗称“二层交换机”。

交换机的种类有:二层交换机、三层交换机、四层交换机、七层交换机分别工作在OSI七层模型中的第二层、第三层、第四层和第七层,并因此而得名。

2)路由器

路由器(Router)是一种计算机网络设备,提供了路由与转送两种重要机制,可以决定数据包从来源端到目的端所经过 的路由路径(host到host之间的传输路径),这个过程称为路由;将路由器输入端的数据包移送至适当的路由器输出端(在路由器内部进行),这称为转 送。路由工作在OSI模型的第三层——即网络层,例如网际协议。

路由器的一个作用是连通不同的网络,另一个作用是选择信息传送的线路。 路由器与交换器的差别,路由器是属于OSI第三层的产品,交换器是OSI第二层的产品(这里特指二层交换机)。

说说静态路由和动态路由有什么区别。

静态路由是由管理员手工配置的,适合比较简单的网络或需要做路由特殊控制。而动态路由则是由动态路由协议自动维护的,不需人工干预,适合比较复杂大型的网络。 
路由器能够自动地建立自己的路由表,并且能够根据实际实际情况的变化适时地进行调整。动态路由机制的运作依赖路由器的两个基本功能:对路由表的维护;路由器之间适时的路由信息交换。

在Linux环境中怎么配置一条默认路由?

在linux上可以用“route add default gw<默认路由器 IP>”命令配置一条默认路由。

3)网关

网关(Gateway),网关顾名思义就是连接两个网络的设备,区别于路由器(由于历史的原因,许多有关TCP/IP 的文献曾经把网络层使用的路由器(Router)称为网关,在今天很多局域网采用都是路由来接入网络,因此现在通常指的网关就是路由器的IP),经常在家 庭中或者小型企业网络中使用,用于连接局域网和Internet。 网关也经常指把一种协议转成另一种协议的设备,比如语音网关。

在传统TCP/IP术语中,网络设备只分成两种,一种为网关(gateway),另一种为主机(host)。网关能在网络间转递数据包,但主机不能 转送数据包。在主机(又称终端系统,end system)中,数据包需经过TCP/IP四层协议处理,但是在网关(又称中介系 统,intermediate system)只需要到达网际层(Internet layer),决定路径之后就可以转送。在当时,网关 (gateway)与路由器(router)还没有区别。

在现代网络术语中,网关(gateway)与路由器(router)的定义不同。网关(gateway)能在不同协议间移动数据,而路由器(router)是在不同网络间移动数据,相当于传统所说的IP网关(IP gateway)。

网关是连接两个网络的设备,对于语音网关来说,他可以连接PSTN网络和以太网,这就相当于VOIP,把不同电话中的模拟信号通过网关而转换成数字信号,而且加入协议再去传输。在到了接收端的时候再通过网关还原成模拟的电话信号,最后才能在电话机上听到。

对于以太网中的网关只能转发三层以上数据包,这一点和路由是一样的。而不同的是网关中并没有路由表,他只能按照预先设定的不同网段来进行转发。网关最重要的一点就是端口映射,子网内用户在外网看来只是外网的IP地址对应着不同的端口,这样看来就会保护子网内的用户。

4)网络接口卡(网卡)的功能?

(1)进行串行/并行转换。

(2)对数据进行缓存。

(3)在计算机的操作系统安装设备驱动程序。

(4)实现以太网协议。 
5)网桥的作用?

网桥是一个局域网与另一个局域网之间建立连接的桥梁

22、IO中同步与异步,阻塞与非阻塞区别

同步和异步关注的是消息通信机制 (synchronous communication/asynchronous communication) 
所谓同步,就是在发出一个调用时,在没有得到结果之前,该调用就不返回。但是一旦调用返回,就得到返回值了。 
换句话说,就是由调用者主动等待这个调用的结果。 
而异步则是相反,调用在发出之后,这个调用就直接返回了,所以没有返回结果。换句话说,当一个异步过程调用发出后,调用者不会立刻得到结果。而是在调用发出后,被调用者通过状态、通知来通知调用者,或通过回调函数处理这个调用。

阻塞和非阻塞关注的是程序在等待调用结果(消息,返回值)时的状态.

阻塞调用是指调用结果返回之前,当前线程会被挂起。函数只有在得到结果之后才会返回。

非阻塞:不能立刻得到结果之前,该函数不会阻塞当前线程,而会立刻返回。