python分析北京租房现状,最后的价格分布地图亮了

时间:2024-02-29 15:18:49

租房信息已经有了,为了能对北京目前的租房市场有个直观认识,我对数据进行深度分析,并进行可视化展示

从分析结果中,我得到了哪些位置房源多、各区租房平均价格以及心仪价格地理位置分布等重要信息,为帮助我租房提供重要依据

下面带大家一起看一下整个分析过程:

1.分析各行政区房源数量及单价

import pandas as pd
beijing_daname=[\'朝阳区\', \'丰台区\', \'海淀区\', \'大兴区\', \'通州区\', \'昌平区\', \'东城区\', \'西城区\', \'顺义区\']
data=pd.read_csv(\'租房数据加经纬度.csv\',encoding=\'gbk\')
areas=list(set(list(data[\'行政区\'])))
area_sums={}
for area in areas:
    area_sums[area]=list(data[\'行政区\']).count(area)
from pyecharts import options as opts
from pyecharts.charts import Bar
import random
hotel_num=[area_sums[i] for i in beijing_daname]
bar = (
    Bar()
    .add_xaxis(beijing_daname)
    .add_yaxis("", hotel_num)
    .set_global_opts(title_opts=opts.TitleOpts(title="北京各区房源数量"))
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=True),
        markline_opts=opts.MarkLineOpts(
            data=[
                opts.MarkLineItem(type_="min", name="最小值"),
                opts.MarkLineItem(type_="max", name="最大值"),
                opts.MarkLineItem(type_="average", name="平均值"),
            ]
        ),
    )
)
bar.render_notebook()

  

 

 

从上图可以得出以下结论:

朝阳区的房源数量最多,
有1877套
顺义区的房源数量最少,
有272套
9个区平均房源数量为611套。

各城区房源单价情况(每平米单价*30平米为例)

unit_price={}
for i in list(data.groupby(\'行政区\')):
    if i[0] in beijing_daname:
        unit_price[i[0]]=int(i[1][\'价格\'].sum()/i[1][\'面积\'].sum())*30
unit_price
bar = (
    Bar()
    .add_xaxis(list(unit_price.keys()))
    .add_yaxis("", [unit_price[i] for i in list(unit_price.keys())])
    .set_global_opts(title_opts=opts.TitleOpts(title="北京各区租房均价(每平米单价*30平米为例)"))
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=True),
        markline_opts=opts.MarkLineOpts(
            data=[
                opts.MarkLineItem(type_="min", name="最小值"),
                opts.MarkLineItem(type_="max", name="最大值"),
                opts.MarkLineItem(type_="average", name="平均值"),
            ]
        ),
    )
)
bar.render_notebook()

  

 

 

以30平米为例:​​​​​​​

西城区的住房价格最高
为4350元
通州区的租房价格最低
为1620元
价格差距还是很大的

2.分析分析各户型占比及价格分布

layouts=list(set(data[\'户型\']))
layout=data.loc[:,\'户型\'].value_counts()
from pyecharts import options as opts
from pyecharts.charts import Pie
print(list(layout.index)[:10])
values=[int(i) for i in list(layout.values)[:10]]
pie = (
    Pie()
   .add(
        "",
        [(i,j)for i,j in zip(list(layout.index)[:10],values)],
        radius=["30%", "75%"],
        center=["40%", "50%"],
        rosetype="radius",
        label_opts=opts.LabelOpts(is_show=False),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="北京市各区出租房户型占比"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="85%", orient="vertical"),)
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c},{d}%"))
)
pie.render_notebook()

  

 

 由于户型种类比较多,所以我只选了前10种,从图中可以看出,房源主流是1室1厅1卫,占比41.86%,其次分别是是2室1厅1卫、1室0厅1卫,各占比30.58%和11.02%

cut_n=list(range(0,12000,1000))
income=pd.cut(data["价格"],cut_n)
price_cut=data[\'价格\'].groupby(income).count()
index=list(price_cut.index)
index=[str(i) for i in list(price_cut.index)]
values=[int(i) for i in list(price_cut.values)]
pie = (
    Pie()
   .add(
        "",
        [(i,j)for i,j in zip(index,values)],
        radius=["30%", "75%"],
        center=["40%", "50%"],
        rosetype="radius",
        label_opts=opts.LabelOpts(is_show=False),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="北京市各区出租房户型占比"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="85%", orient="vertical"),)
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:  {c}, {d}%"))
)
pie.render_notebook()

  

 

 

目前,主流的租房价格在3000至6000元,占比50%左右,最便宜有1000元以下的,位置相对较偏,且面积在20平以内;贵的有1万多的,这种一般面积在100平以上,位置在主城区。

3.房子位置分布

根据上述分析情况和我的预算,我决定在朝阳区找一套合适的房子,取出价格在4000至6000元的数据,另存表格,并将表格导入水经注地图下载器中

 

com_data=data[data[\'价格\'].le(6000)]
com_data=com_data[com_data[\'价格\'].ge(3000)]
com_data=com_data[com_data[\'行政区\']==\'朝阳区\']
com_data.to_csv(\'心仪房子.csv\',encoding=\'gbk\')

  

结果展示如下:

下面红色数字为租房价格,这样找起房子来就更方便了

注意:如果你是打算找python高薪工作的话。我建议你多写点真实的企业项目积累经验。不然工作都找不到,当然很多人没进过企业,怎么会存在项目经验呢? 所以你得多找找企业项目实战多练习下撒。如果你很懒不想找,也可以进我的Python交流圈:1156465813。群文件里面有我之前在做开发写过的一些真实企业项目案例。你可以拿去学习,不懂都可以在裙里找我,有空会耐心给你解答下。

 

以下内容无用,为本篇博客被搜索引擎抓取使用
(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)
python 是干什么的 零基础学 python 要多久 python 为什么叫爬虫
python 爬虫菜鸟教程 python 爬虫万能代码 python 爬虫怎么挣钱
python 基础教程 网络爬虫 python python 爬虫经典例子
python 爬虫
(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)
以上内容无用,为本篇博客被搜索引擎抓取使用