变焦镜头由于具有可连续改变焦距值的特点,在需要经常改变摄影视场的情况下非常方便使用,所以在摄影领域应用非常广泛。但由于变焦距镜头的透镜片数多、结构复杂,所以最大相对孔径不能做得太大,致使图像亮度较低、图像质量变差,同时在设计中也很难针对各种焦距、各种调焦距离做像差校正,所以其成像质量无法和同档次的定焦距镜头相比。
变焦距镜头
|
定焦距镜头
|
手动变焦 电动变焦
|
鱼眼镜头 短焦镜头 标准镜头 长焦镜头
|
放大率:m=h’/h=L’/L
|
物距:L = f(1+1/m)
|
像距:L’= f(1+m)
|
焦距:f = L/(1+1/m)
|
物高:h = h’/m = h’(L-f)/f
|
像高:h’ = mh = h(L’-f)/f
|
焦距
主点到焦点的距离称为光学系统的焦距,这是镜头的重要参数之一,它决定了像与实际物体之间的比例。在物距一定的情况下,要得到大比例的像,则要求选用长焦距的镜头。
如图2所示,自物方主点H到物方焦点F的距离称为物方焦距或前焦距f;类似地,自像方主点H \'到物方焦点F \'的距离称为物方焦距或前焦距f \'。其定义具有方向性,如果主点到焦点的方向与光线的方向一致,则焦距为正;反之则为负。图2中所示的情况,像方焦距f \'>0,物方焦距f \'<0。如果系统两侧的介质相同,则f \'=-f。
相对孔径与光圈数F数
相对孔径为入瞳直径与焦距的比值D/f \' ,它主要影响像面的照度,照相镜头像面的照度与相对孔径的*方成正比。为了满足景物较暗时摄影的需要,或者为了对高速运动物体摄影,要求采用很短的曝光时间,它们都要求提高像面的照度,因此就需要采用大的相对孔径。
镜头通常采用光圈数F来表示通光孔径的大小,光圈数F数为相对孔径的倒数,即F=f \' / D
视场角(FOV:Field of view)与像面尺寸
镜头的视场角决定了被拍摄景物的范围。由于摄影系统一般是对远处景物成像,所以其像面通常位于焦*面附*,因此像面大小与视场角2W \' 的关系可表示为公式y \' =f \' tanW \'
公式中y \' 应该是像面区域的半径。
目前,工业相机通常使用CCD或者CMOS传感器作为像面接收器,有面阵和线阵两种,其工作区域的形状分别为矩形或线形,传感器的工作区域必须包含在镜头所确定的像面圆形区域之内。在镜头的参数中,也经常使用传感器的大小来表示视场大小。
面阵传感器是由许多像素单元组成的一个矩形阵列,每个像素单元都是一个方形传感器。面阵传感器的大小通常是以其对角线的长度来表示的。目前常用的面阵传感器有:
|
1英寸 |
2/3英寸 |
1/2英寸 |
1/3英寸 |
1/4英寸 |
对角线(mm) |
16 |
11 |
8 |
6 |
4 |
幅面尺(mm) |
12.8×9.6 |
8.8×6.6 |
6.4×4.8 |
4.8×3.6 |
3.6×2.7 |
线阵传感器也是由许多像素单元组成,与面阵传感器不同的是,这些像素单元排成一个单列。线阵传感器的大小则是以像素单元的数量和大小来表示的。线阵传感器的规格有1K、2K、4K、8K、12K等,像素单元有5µm、7µm、10µm、14µm等。
对于同一个传感器,长焦距的镜头只能有较小的视场角,能对远处景物拍摄得比较大的像,适宜于远距离摄影,故常称之为望远镜头;而短焦距的镜头则有较大的视场角,能将*处较大范围内的景物摄入像面,故又称之为广角镜头,视场角更大的又称为鱼眼镜头;介于二者之间,焦距属于中等,约等于幅面对角线长度的镜头,称之为标准镜头。
工作波长
光学镜头都是针对一定波长范围内的光波工作,自物面发出的光波,在此波长范围内的,能够通过镜头在像面上成一清晰像,而且能量衰减较小;而在此范围外的光波,则难以校正像差,成像质量差,分辨率低,而且能量衰减很大,甚至被光学介质材料所吸收,完全不能通过镜头。
光就其本质来说就是电磁波,按照波长通常将其划分成不同的光谱波段,如下表所示:
波 段 |
符号 |
波长(nm) |
|
紫外 |
真空紫外 |
VUV |
100~200 |
远紫外 |
FUV |
200~280 |
|
中紫外 |
Middle UV |
280~315 |
|
*紫外 |
Near UV |
315~380 |
|
可见 |
紫 |
Violet |
380~424 |
蓝 |
Blue |
424~486 |
|
蓝绿 |
Blue green |
486~517 |
|
绿 |
Green |
517~527 |
|
黄绿 |
Yellow green |
527~575 |
|
黄 |
Yellow |
575~585 |
|
橙 |
Orange |
585~647 |
|
红 |
Red |
647~780 |
|
红外 |
*红外 |
NIR |
780nm-3mm |
中红外 |
MIR |
3mm-50mm |
|
远红外 |
FIR |
50mm-1mm |
分辨率
分辨率是评价镜头质量的一个重要参数,定义为在像面除镜头在单位毫米内能够分辨开的黑白相间的条纹对数,如图4所示,
图4 分辨率条纹
分辨率为1/2d,其中,d为线宽。分辨率的单位为为lp/mm(线对/毫米)。
在理想成像镜头的焦*面上能分辨开来的二条纹之间的相应间距
其倒数即为理想镜头的分辨率
公式中,λ为中心波长,单位为毫米。可见,理想镜头的分辨率完全由相对孔径所决定,相对孔径越大,F/#越小,分辨率就越高。按此公式决定的只是视场中心的分辨率,在视场边缘,由于成像光束的孔径角比轴上点小,因此分辨率有所降低。
实际的摄影镜头,由于有比较大的剩余像差,其分辨率要比理想镜头的分辨率低得多。因此,通常使用调制传递函数(MTF:Modulation Transfer Function)来表征镜头的实际分别率。调制传递函数MTF定义为在一定空间频率时像面对比度与物面对比度之比,这里空间频率以单位毫米内的线对数来表示,其单位为lp/mm。对于一个镜头,不同的空间频率处的MTF是不同的,一般来说,随着空间频率的增大,MTF越来越小,直至为零,MTF为零时的空间频率称为镜头的截止频率。一些镜头厂家为了表示方便,通常也以镜头的截止频率来替代MTF,用以表示镜头的分辨率。
在实际工业应用中,系统使用面阵或线阵传感器作为成像器件,因此系统的分辨率通常也会受到成像传感器中像元分辨率的限制。像元分辨率定义为单位毫米内像素单元数的一半,即
其中p为像素单元的尺寸大小,例如一个CCD的像元尺寸大小为5×5微米,则像元分辨率则为:
传感器的像元分辨率限制了系统的最高分辨率,即使镜头的分辨率再高,系统也不可能分辨高于像元分辨率的细节。然而在实际使用中,由于景深的存在,为了使镜头偏离对准面仍然能够成像清晰,因此,在选择镜头时,通常要求镜头分辨率要略高于像元分辨率,这样才能使系统的分辨率达到传感器所限制的最高分辨率。
畸变
对于理想光学系统,在一对共轭的物像*面上,放大率是常数。但是对于实际的光学系统,仅当视场较小时具有这一性质,而当视场较大或很大时,像的放大率就要随着视场而异,这样就会使像相对于物体失去相似性。这种使像变形的成像缺陷称为畸变。
畸变定义为实际像高y \' 与理想像高y0 \' 之差y \' -y0 \' ,而在实际应用中经常将其与理想像高y0 \' 之比的百分数来表示畸变,称为相对畸变,即
有畸变的光学系统,若对等间距的同心圆物面成像,其像将是非等间距的同心圆。当系统具有正畸变时,实际像高y \' 随视场的增大比理想像高y0 \' 增大得快,即放大倍率随视场的增大而增大,则同心圆的间距自内向外逐渐增大;反之,当为负畸变时,圆的间距自内向外逐渐减小。若物面为如图5(a)所示的正方形网格,那么,由正畸变的光学系统所成的像呈枕形,如图5(b);由负畸变光学系统所成的像呈桶形,如图5(c)。图中虚线所示是理想像。
图5 畸变
畸变在光学系统中只引起像的变形,对像的清晰度并无影响。因此,对于一般的光学系统,只要感觉不出它所成像的变形,这种成像缺陷就无妨碍。但是对于某些要利用像来测定物体大小尺寸的应用,畸变的影响就非常重要了,它直接影响测量精度,必须予以严格校正。
景深
当把物镜调焦到某一摄影对象时,在该对象的前后能在像面上呈清晰像的范围,称为景深。如图6所示,景深就是Δ1+Δ2。像*面A’为传感器靶面所在*面,其共轭*面A为对准*面。能在靶面上呈清晰像的最远*面,即物点B1所在的*面,称为远景,能在靶面上呈清晰像的最**面,即物点B2所在的*面,称为*景。物点B1、B2分别成像于靶面前后,投影到靶面上成为弥散斑,当弥散斑小到一定程度时可认为是清晰的像。
图6 景深
景深的计算公式为:
式中,Δ1和Δ2分别为远景深度和*景深度,p、p1和p2分别为调焦*面、远景*面和*景*面到物镜的距离,f \'为物镜的焦距,F为物镜的光圈数, δ为像面上可允许的弥散圆直径,在CCD或CMOS上其最小值为像元尺寸。
可见,景深与物镜的焦距、光圈大小和摄影距离有关。光圈越小(F数越大),或摄影距离越大,景深就越大,但远景深度要比*景深度大。若在同一距离用同一光圈值摄影时,焦距短的镜头,具有大的景深;反之,长焦距镜头的景深就小。
工作距离
在选择镜头时,为了确定系统的空间尺寸,往往需要了解镜头工作时的物距、像距以及镜头的两个主面之间的距离等参数。然而,物距、像距均是相对与镜头光学系统的主面位置而言的,而镜头的主面却难以直接确定,因此物距、像距等参数也难以直接测量得到。于是,镜头厂家提出了工作距离这一参数,同时也给出了在该工作距离处镜头的放大倍率,以方便使用者确认系统的空间尺寸。
然而,目前对于工作距离的定义还没有形成统一意见,主要有两种定义。第一种定义是指被摄物体到相机底片的距离;另一种定义是指被摄物体到镜头前端面的距离。目前,大部分相机镜头厂家均采用第一种定义,因此,在没有特殊说明的情况下,手册中给出的工作距离既是第一种定义。
相机接口
在光学系统中,最后一个光学镜片表面的顶点到像面的距离称为后截距(BFL:Back Focal Length),对于不同的光学系统,其后截距都是不一样的。因此在安装镜头时,需要调节镜头到相机的相对位置,使相机底片到镜头最后一面顶点的距离满足后截距的要求,即使底片位于镜头的像*面上。
相机接口即为相机和镜头的连接方式,同时也保证了相机和镜头的相对位置。早期的相机一般采用螺纹接口。随着相机的不断发展,接口需要传递更多的数据信息,螺纹接口已不能满足相机的要求了。1959年,尼康、佳能、美能达这三大日本相机厂家各自推出了各自的相机接口,随后宾得、莱卡、奥林巴斯等其它厂家也相继推出的自己的相机接口。
随着技术不断进步,相机功能不断完善,各个厂家的相机接口也几经变换。目前,常用的一些接口类型如下表所示:
接口类型 |
法兰后截距(mm) |
卡口环直径(mm) |
使用卡口的品牌 |
C口 |
17.526 |
1(inch) |
|
CS口 |
12.5 |
1(inch) |
|
4/3口 |
38.58 |
46.5 |
Olympus、Panasonic、Leica |
F口 |
46.5 |
47 |
Nikon |
EF口 |
44.0 |
54 |
Canon EOS |
PK口 |
45.5 |
48.5 |
Pentax、Ricoh |
C/Y口 |
45.5 |
48 |
Contax、Yashica |
在上表中,法兰后截距(Flange Back Focal Length)是指相机接口的定位面到底片的距离,它保证了镜头的像面与相机的底片重合。这样,不仅为相同接口的相机和镜头的连接提供了非常方便的方式,而且也为不同接口之间的相互转换提供了依据。
光学系统的一些计算公式
在选择镜头时,通常需要了解一些预先给出的条件,如物距或工作距离、放大倍率等,根据这些条件,可以大致*似推算出系统的一些主要参数,并以此作为选择镜头的参考。根据上述的高斯公式和放大率公式,我们可以推出下面几个常用公式
物距
像距
焦距
物高
像高
镜头选择
在摄影光学系统中,镜头是重要的一个部件,它直接决定整个系统的参数和性能。因此选择一个合适的镜头,是系统设计过程中至关重要的一步工作。在选择过程中,需要充分考虑如下几个方面的因素:
- 目标尺寸和测量精度
- 传感器尺寸和像素尺寸
- 放大倍率
- 光阑大小
- 工作距离
- 系统尺寸
- 工作波长
- 景深
- 畸变
- 摄像机接口
- 传感器类型,如彩色还是黑白、是否带红外滤镜
- 对于电机驱动镜头,需要考虑驱动信号类型
- 是否有红外滤波要求
- 环境要求,如温度、震动、防尘等
摄影镜头的基本光学性能由焦距、相对孔径和视场角这三个参数表征。因此,在选择镜头时,首先需要确定这三个参数,然后考虑分辨率、景深、畸变、接口等其他因素。
选择镜头的基本步骤可以参考以下几条:
- 根据目标尺寸和测量精度,可以确定传感器尺寸和像素尺寸、放大倍率以及镜头的传递函数,这可能会有好几个选择,因此需要选择一个最为合适的组合;
- 根据系统尺寸和工作距离,结合放大倍率,可以大概估算出镜头的焦距,焦距、传感器尺寸确定以后,视场角也就可以计算出来了;
- 根据现场的照明条件确定光圈大小和工作波长;
- 确定畸变、景深、相机接口等其他要求。
至此,基本可以确定一款或几款合适的镜头,然后再根据其它一些非技术要求选择一个最为合适的以供使用。
光圈 光圈大小与景深成反比,光圈越大,景深越小。
焦距 焦距长短与景深成反比,焦距越大,景深越小。
物距 物距大小与景深成正比,物距越大,景深越大。
工业镜头外部主要参数(视场、分辨率、工作距离、景深)介绍
实际商品化的工业镜头总是只是某些参数的标准产品,如果需要完全满足系统的要求可能需要定制工业镜头,这样价格就比*常应用贵很多。因此,很多时候工业镜头参数选择要分清自己视觉系统应用中的哪些是必须保证的,哪些是可以通过其它的方法折中的。
一、工业镜头光学放大倍率的计算方法
二、工业镜头对应视场范围的计算方法
附:常见工业相机传感器尺寸大小
1/4″:3.2mm×2.4mm;
1/3″:4.8mm×3.6mm;
1/2″:6.4mm×4.8mm;
2/3″:8.8×6.6mm;
1″:12.8mm×9.6mm
机器视觉系统中,工业镜头相当于人的眼睛,其主要作用是将目标的光学图像聚焦在图像传感器(相机)的光敏面阵上。视觉系统处理的所有图像信息均通过工业镜头得到,工业镜头的质量直接影响到视觉系统的整体性能。下面对机器视觉工业镜头的相关专业术语做以详解。
一、远心光学系统:
指主光线*行于工业镜头光学轴的光学系统。而光从物体朝向镜头发出,与光学轴保持*行,甚至在轴外同样如此,则称为物体侧远心光学系统。
二、远心镜头:
远心镜头指主光线与镜头光源*行的工业镜头。有物方远心,像方远心,双侧远心。
普通工业镜头
主光线与镜头光轴有角度,因此工件上下移动时,像的大小有变化。
双侧远心境头
主物方,像方均为主光线与光轴*行
光圈可变,可以得到高的景深,比物方远心境头更能得到稳定的像
最适合于测量用图像处理光学系统,但是大型化成本高
物方远心境头
只是物方主光线与镜头主轴*行
工件上下变化,图像的大小基本不会变化
使用同轴落射照明时的必要条件,小型化亦可对应
像方远心境头
只是像方主光线与镜头光轴*行
相机侧即使有安装个体差,也可以吸收摄影倍率的变化
用于色偏移补偿,摄像机本应都采用这种镜头
三、远心光学系统的特色:
优点:更小的尺寸。减少镜头数量,可降低成本。
缺点:上下移动物体表面时,会改变物体尺寸或位置。
优点:上下移动物体表面时,不会改变物体尺寸或位置。使用同轴照明时。可使用更小的尺寸
缺点:未使用同轴照明时,大于标准镜头的尺寸
四、远心:
远心度是指物体的倍率误差。倍率误差越小,远心度越高。远心度有各种不同的用途,在镜头使用前,把握远心度很重要。远心镜头的主光线与镜头的光轴*行,远心度不好,远心镜头的使用效果就不好;远心度可以用下图进行简单的确认。
五、分辨率(μm):
光学系能力的尺度,表示黑白格状图案通过镜头观察时,1mm中可以分辨观察到黑白条纹的最多对数。分辨率为两点间在无法识别前,能靠*的最*距离测量值,例如1μm的分辨率代表两点间在无法识别前,能靠*的最*距离为1μm。以下为根据镜头的无相差光衍射情况计算理论分辨率的公式。
六、分辨力(Lines/mm):
分辩力指黑白网线图镜头里影像内1mm面积,可识别的黑白两色条纹数。分辨力的单位为线条/mm,例如100线条/mm代表可识别黑白间距1/100mm(10μm)。黑白线条的宽度为1/200mm(5μm)。
七、水*TV分辨率(TV线条):
宽度里的黑白水*线总条数,相当于电视机屏幕垂直高度的高度值。屏幕的垂直与水*长度比率通常为3:4,因此水*宽度里的总条数为3/4。电视机水*分辨率为240TV条线,电视机屏幕水*宽度的总条数为320条线。测量镜头的分辨率时,一组黑色与白色线条应视为一条线,但是在电视机分辨率线条方面,一组视为2TV线条。
八、失真(%):
失真为光学轴外的直型物体,呈现曲线时的镜头像差。镜头失真也称为镜头畸变,即光学透镜固有的透视失真的总称,可分为枕形失真和桶形失真,直线朝向中心的失真情况为枕形失真(Pincushion Distortion),向外扩张的失真称为桶形失真(Barrel Distortion)。如下图示:
九、TV失真(%):
TV屏幕上的影像失真。数值越接*零,牲能越高。
十、电视失真:
实际边长的歪曲形状与理想的形状的百分比算出的值。
十一、孔径效率边际光量(%):
孔径效率为使用镜头拍摄均匀亮度的物体时,成像盘光学轴与四周区域之间的亮度差异,单位为百分比(%),假设*亮度为100,为镜头的光学特征之一。
十二、遮蔽(%):
遮蔽为使用镜头与CCD-TV镜头拍摄均匀亮度的物体时,电视机屏幕*与边缘之间的亮度差异,单位为百分比(%)。通常使用受光组件与CCD组件的功率比计算此百分比。遮蔽意指镜头与TV镜头的整体表现,可使用远心光学系统以缩小遮蔽的情况。
十三、色差:
在镜头光学统中,形成影像的位置与影像放大倍率随光线波长的不同而不同。不同波长的光线有不同的颜色,这叫做色彩失真。光学轴上的失真叫做色彩失真。放大倍率的差异则叫做放大倍率色彩失真。
十四、工作距离(WD)(mm):
工作距离指镜头第一个工作面到被测物体的距离。
十五、物像间距离O/I(Object to Imager) | |
OI指物体到结像*面的距离。 | |
十六、焦距f(mm)后焦距/前焦距 | |
焦距为光学系统的主光点到焦点的距离。从最后一片镜头的顶点到后焦点的距离,为后焦距。从第一片镜头的顶点到前焦点的距离,为前焦距。 |
十七、景深:
深度为与物体从最佳焦点前后移动时.出现最锐利焦点的最*点与最远点之间的距离。物体侧的深度范围称为景深。同样,照相机侧的范围称为焦点深度。具体的景深的值多少略有不同。景深(Depth of Field)可以用以下的计算式计算出来:
景深 = 2 x Permissible COC x 实效F / 光学倍率2 = 允许误差值 / (NA x 光学倍率)(使用的是0.04mm的Permissible COC)
通过镜头的影像理论土会形成点状。清晰影像上出现可接受的摸糊情况,称为可接受的弥散圆。
十八、焦深:
深度为当CCD从最佳焦点前后移动时,出现最锐利焦点的最*点与最远点之间的距离。影像侧的深度范围称为焦深。
十九、后截距(mm):
从镜头安装座盘前端到影像的距离。
二十、C安装座规格:
名称 | 标准外径 | 螺丝螺纹数(25.4mm用) | 后截距 |
U1 | 25.4000mm | 32Threads | 17.526mm |
二十一、数值孔径 NA,NA\':
当物体在入射光孔上产生的半角为u,且折射率为n,n x sinu为物体侧数值孔经(NA)。
当物体在出射光孔上产生的半角为u\',且折射率为n\',n\' x sinu\' 为影像侧数值孔径{NA\')。
NA=n x sinu NA\'=n\' x sin u\'
NA越高,镜头的分辨率与亮度越佳。如下图所示 入射角度 u, 物体侧折射率n, 成像侧的折射率\' n\':NA = NA\' x 放大率
对于Macro镜头,NA =M/2 xF NA\' = 1/2 xF NA=NA\' x光学倍率 NA\'=NA x光学倍率
二十二、F值F No:
此值指镜头的亮度。将镜头对焦距离除以物体侧的有效直径(入射光孔直径Dmm),即可得到此数值,也可使用NA与镜头的光学放大倍率(β)计算。数值越小,镜头越明亮。
F No=焦距/入射孔径或有効口径=f/D
二十三、有效F No:
此值为具体在有限距离内的镜头亮度,指实际操作时的亮度。光学放大倍率越高(β),镜头越暗。
实效F = (1 +光学倍率) x F#,实效F = 光学倍率 / 2NA
二十四、光学放大倍率β:
物体尺寸与影像尺寸的比例。 | |
β |
=y\'/y |
|
=b/a |
|
=NA/NA\' |
|
=CCD镜头元件尺寸/视野实际尺寸 |
二十五、光学倍率:
放大倍率(Magnification)指的是通过镜头的调整能够改变拍摄对象原本成像面积的大小。光学倍率就是通过光学镜头变倍的放大倍率。主要点与成像的关系:放大率是指成像大小与物体的比。
二十六、电子放大倍率:
电子放大倍率为影像在显示器屏幕上显示时与在CCD上显示相比的放大倍率。
二十七、显示器放大倍率:
显示器放大倍率为通过镜头在显示器呈现物体的放大倍率。
显示器放大倍率=(光学放大倍率β) x (电子放大倍率)
(计算范例) 光学放大倍率=02x,CCD尺寸1/2"(对角线8mm),显示器1/4":
电子放大倍率=14 x25.4/8=44.45
显示器放大倍率=0.2x44.45=8.89(倍) (1英寸=25.44mm)
※有时根据TV监视器的扫描状态,以上的简易计算将有一些变化。
二十八、视野(FOV):
视野指使用照相机以后看到的物体侧的范围。
照相机有效区域的纵向长度(V)/光学倍率(M)=视野(V)
照相机有效区域的横向长度(H)/光学倍率(M)=视野(H)
照相机有效区域的纵向长度(V)or(H)=照相机一个画素的尺寸×有効画素数(V)or(H)来计算。
(计算范例) 光学放大倍率=0.2x,CCD尺寸1/2"(长4.8mm,宽6.4mm}:
视野尺寸 长度=4.8/0.2=24(mm)
宽度=6.4/0.2=32{mm)
二十九、解析度:
表示了所能见到了2点的间隔0.61x 使用波长(λ)/ NA=解析度(μ),以上的计算方法理论上可以计算出解析度,但不包括失真。※使用波长为550nm
三十、解像力:
1mm中间可以看到黑白线的条数。单位(lp)/mm
三十一、MTF(Modulation Transfer Function):
成像时再现物体表面的浓淡变化而使用的空间周波数和对比度。
三十二、成像圈:
成像尺寸φ,要输入相机感应器尺寸。
三十三、照相机 Mount:
C-mount: 1" diameter x 32 TPI: FB: 17.526mm,CS-mount: 1" diameter x 32 TPI: FB: 12.526mm,F-mount: FB:46.5mm,M72-Mount: FB 厂家各有不同。
三十四、边缘亮度:
相对照度是指*的照度与周边的照度的百分比。
三十五、通风盘及解析度:
Airy Disk(通风盘)是指通过没有失真的镜头在将光集中一点时,实际上形成的是一个同心圆。这个同心圆就叫做Airy Disk。Airy Disk的半径r可以通过以下的计算公式计算出来。这个值称为解析度。r= 0.61λ/NA Airy Disk的半径随波长改变而改变,波长越长,光越难集中于一点。 例:NA0.07的镜头 波長550nm r=0.61*0.55/0.07=4.8μ
三十六、 MTF 及解析度:
MTF(Modulation Transfer Function) 是指物体表面的浓淡变化,成像侧也被再现出来。表示镜头的成像性能,成像再现物体的对比度的程度。测试对比性能,用的是具有特定空间周波数的黑白间隔测试。空间周波数是指1mm的距离浓淡变化的程度。
图1所示,黑白矩阵波,黑白的对比度为100%.这个对象被镜头摄影后,成像的对比度的变化被定量化。基本上,不管什么镜头,都会出现对比度降低的情况。最终对比度降低至0%。,不能进行颜色的区别。
图2、图3显示了物体侧与成像侧的空间周波数的变化。横轴表示空间周波数,纵轴表示亮度。物体侧与成像侧的对比度由A、B计算出来。MTF由A,B的比率计算出来。
解析度与MTF的关系:解析度是指2点之间怎样被分离认识的间隔。一般从解析度的值可以判断出镜头的好坏,但是实际是MTF与解析度有很大的关系。图4显示了两个不同镜头的MTF曲线。镜头a 解析度低但是具有高对比度。镜头b对比度低但是解析度高。
三十七、微距镜头:
不用*接环或特写镜头而实现扩大摄影,为*接摄影而设计的镜头,有限远(=从物镜出射的光,在一定距离处聚焦)
三十八、CCTV镜头:
适合于广范围的扩大观察,需要严格精度时不适合,无限远(=从物镜出射的光,不聚焦,*行前进)
三十九、变倍镜头:
焦距可变镜头,倍率,摄像范围等可以简单改变。适合于需要寻找最合适摄影条件(摄影距离,镜头的焦距)以便于操作的场合使用。不产生聚焦位置移动的称为变倍镜头,产生焦距位置移动的称为变焦镜头。
四十、成像圆:
光学系统中成像圆的尺寸,成像圆的尺寸=CCD对角尺寸,和CCD尺寸同样意义。
四十一、后变倍镜头:
安装在CCD前面,不改变工作距离,扩大视野范围。F值下降,分辨率、对比度下降,聚焦会有些不准。
四十二、前变倍镜头:
安装在镜头前面,工作距离会变化,亮度不变,扩大视野范围。
远心镜头广泛应用于激光扫描机,影像测量仪,在线检测,医疗设备,自动化设备,机器视觉,显微技术等等很多方面。远心镜头可以在一定的物距范围内,使得到的图像放大倍率不会随物距的变化而变化,因此,不会出现类似使用标准镜头时三维特征出现的透视变形和图像位置错误。即使在深孔内部的物体,在整个视野中也清晰可见,因此,在检测三维物体时或当图像尺寸和形状精确性十分重要的情况下,远心镜头非常有效。对于精密测量的场合特别适用。
一、对工业镜头的选择,我们首先必须确定客户需求:
二、典型案例:齿轮项目
综上所述选择640*480分辨率、曝光时间为1/10000 S到30 S的工业相机,12mm定焦CCTV镜头。
远心镜头构造原理