自动控制原理 1
1.1 开环与闭环系统
简单的开环系统
闭环系统转换成为闭环系统:
1.2 稳定性分析2
对于一个系统,如果没有稳定性的先决条件,那么其他的(稳态误差分析、瞬态误差分析)将无从说起。稳定性:传递函数极点在极坐标中的左半边。(横坐标为极点,纵坐标为零点)
零点和极点的定义如下:
分析为什么极点为负的,系统是稳定的:
下面这个图要更加直观:
那么我们如何设计控制器?就是将最终的传递函数的极点在左边平面,叫做极点配置。现代控制理论中,研究的是状态矩阵的特征值,对应的就是传递函数的极点。
1.3 一起燃烧卡路里/科学减肥(1)_系统分析实例_数学建模部分
框图表示如下:
设计比例控制器(最为简单的控制器)如下:
那么如何设计该控制器,让最终的系统趋向于稳定状态呢?(也就是说传递函数的极点在左半边平面)
学习控制理论一定要从微分方程入手,弄清楚微分方程与传递函数之间的关系就会容易理解很多。
最终产生稳态误差。
1.4 终值定理与稳态误差3
下面讨论的系统是存在参考信号的系统,类似于下图。终值定理,用来算系统输出的极限的工具。(FVT)
下图解释了弹簧阻尼系统的传递函数,还有在冲激响应下系统的** 终值定理**的使用方式。
这里需要注意的是第二种情况,代表了输入参考信号为c时(相当于r)的情况。
条件如下:
最终求出来的极限值经过运算就是系统的稳态误差。
1)比例控制
举例说明。下面是一个最为简单的一阶系统,采用的控制方式是比例控制。
利用定理分析稳态误差如下:
这里说明了比例控制的局限性,必须采用更加实用性的控制算法。比例控制充法消除稳态误差
2)比例积分控制
并有下面变换方式:
通过引入一个积分信号,让本来的一阶系统变成一个二阶系统。
1.5 根轨迹
再回到弹簧系统,是一个二阶系统。
对于高阶系统不过也是几个一阶系统的叠加,如下:
这一节评估了根的位置对于控制器的影响。
2 工具
2.1 拉普拉斯变换
- s通常是代表着微分的。1/s代表的是积分
- 计算拉普拉斯是采用输出/输入计算方式。
- 拉普拉斯变换与z变换的区别?
拉普拉斯逆变换4