P.S.:(2008-06-05)去年11月发布了一系列有关小波变换和图像处理的文章,把学习小波过程中的心得体会和编写的程序放在网上和大家共享交流。半年来,感谢大家的关注和帮助,在相互的讨论交流中,我不断地从大家提出的问题中拓展自己的知识面,对小波的理论及其应用有了更深入的了解和掌握。根据和大家讨论交流中发现的问题,对博客中的程序进行修正。有关小波图像分解和重构的两篇文章中分享的程序,存在下列问题:
http://blog.csdn.net/chenyusiyuan/archive/2008/06/05/2513865.aspx
http://blog.csdn.net/chenyusiyuan/archive/2008/06/05/2514119.aspx
function [cA,cD] = mydwt(x,lpd,hpd,dim);
% 函数 [cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD]
% 输入参数:x——输入序列;
% lpd——低通滤波器;
% hpd——高通滤波器;
% dim——小波分解级数。
% 输出参数:cA——平均部分的小波分解系数;
% cD——细节部分的小波分解系数。
cA=x; % 初始化cA,cD
cD=[];
for i=1:dim
cvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB提供的卷积函数conv()
dnl=downspl(cvl); % 通过下抽样求出平均部分的分解系数
cvh=conv(cA,hpd); % 高通滤波
dnh=downspl(cvh); % 通过下抽样求出本层分解后的细节部分系数
cA=dnl; % 下抽样后的平均部分系数进入下一层分解
cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cD
end
function y=downspl(x);
% 函数 Y=DOWMSPL(X) 对输入序列进行下抽样,输出序列 Y。
% 下抽样是对输入序列取其偶数位,舍弃奇数位。例如 x=[x1,x2,x3,x4,x5],则 y=[x2,x4].
N=length(x); % 读取输入序列长度
M=floor(N/2); % 输出序列的长度是输入序列长度的一半(带小数时取整数部分)
i=1:M;
y(i)=x(2*i);
function y = myidwt(cA,cD,lpr,hpr);
% 函数 MYIDWT() 对输入的小波分解系数进行逆离散小波变换,重构出信号序列 y
% 输入参数:cA —— 平均部分的小波分解系数;
% cD —— 细节部分的小波分解系数;
% lpr、hpr —— 重构所用的低通、高通滤波器。
lca=length(cA); % 求出平均、细节部分分解系数的长度
lcd=length(cD);
while (lcd)>=(lca) % 每一层重构中,cA 和 cD 的长度要相等,故每层重构后,
% 若lcd小于lca,则重构停止,这时的 cA 即为重构信号序列 y 。
upl=upspl(cA); % 对平均部分系数进行上抽样
cvl=conv(upl,lpr); % 低通卷积
cD_up=cD(lcd-lca+1:lcd); % 取出本层重构所需的细节部分系数,长度与本层平均部分系数的长度相等
uph=upspl(cD_up); % 对细节部分系数进行上抽样
cvh=conv(uph,hpr); % 高通卷积
cA=cvl+cvh; % 用本层重构的序列更新cA,以进行下一层重构
cD=cD(1:lcd-lca); % 舍弃本层重构用到的细节部分系数,更新cD
lca=length(cA); % 求出下一层重构所用的平均、细节部分系数的长度
lcd=length(cD);
end % lcd < lca,重构完成,结束循环
y=cA; % 输出的重构序列 y 等于重构完成后的平均部分系数序列 cA
function y=upspl(x);
% 函数 Y = UPSPL(X) 对输入的一维序列x进行上抽样,即对序列x每个元素之间
% 插零,例如 x=[x1,x2,x3,x4],上抽样后为 y=[x1,0,x2,0,x3,0,x4];
N=length(x); % 读取输入序列长度
M=2*N-1; % 输出序列的长度是输入序列长度的2倍再减一
for i=1:M % 输出序列的偶数位为0,奇数位按次序等于相应位置的输入序列元素
if mod(i,2)
y(i)=x((i+1)/2);
else
y(i)=0;
end
end
function [LL,HL,LH,HH]=mydwt2(x);
% 函数 MYDWT2() 对输入的r*c维矩阵 x 进行二维小波分解,输出四个分解系数子矩阵[LL,HL,LH,HH]
% 输入参数:x —— 输入矩阵,为r*c维矩阵。
% 输出参数:LL,HL,LH,HH —— 是分解系数矩阵的四个相等大小的子矩阵,大小均为 r/2 * c/2 维
% LL:低频部分分解系数; HL:垂直方向分解系数;
% LH:水平方向分解系数; HH:对角线方向分解系数。
lpd=[1/2 1/2];hpd=[-1/2 1/2]; % 默认的低通、高通滤波器
[row,col]=size(x); % 读取输入矩阵的大小
for j=1:row % 首先对输入矩阵的每一行序列进行一维离散小波分解
tmp1=x(j,:);
[ca1,cd1]=mydwt(tmp1,lpd,hpd,1);
x(j,:)=[ca1,cd1]; % 将分解系数序列再存入矩阵x中,得到[L|H]
end
for k=1:col % 再对输入矩阵的每一列序列进行一维离散小波分解
tmp2=x(:,k);
[ca2,cd2]=mydwt(tmp2,lpd,hpd,1);
x(:,k)=[ca2,cd2]; % 将分解所得系数存入矩阵x中,得到[LL,Hl;LH,HH]
end
LL=x(1:row/2,1:col/2); % LL是矩阵x的左上角部分
LH=x(row/2+1:row,1:col/2); % LH是矩阵x的左下角部分
HL=x(1:row/2,col/2+1:col); % HL是矩阵x的右上角部分
HH=x(row/2+1:row,col/2+1:col); % HH是矩阵x的右下角部分
function y=myidwt2(LL,HL,LH,HH);
% 函数 MYIDWT2() 对输入的子矩阵序列进行逆小波变换,重构出矩阵 y
% 输入参数:LL,HL,LH,HH —— 是四个大小均为 r*c 维的矩阵
% 输出参数:y —— 是一个大小为 2r*2c 维的矩阵
lpr=[1 1];hpr=[1 -1]; % 默认的低通、高通滤波器
tmp_mat=[LL,HL;LH,HH]; % 将输入的四个矩阵组合为一个矩阵
[row,col]=size(tmp_mat); % 求出组合矩阵的行列数
for k=1:col % 首先对组合矩阵tmp_mat的每一列,分开成上下两半
ca1=tmp_mat(1:row/2,k); % 分开的两部分分别作为平均系数序列ca1、细节系数序列cd1
cd1=tmp_mat(row/2+1:row,k);
tmp1=myidwt(ca1,cd1,lpr,hpr); % 重构序列
yt(:,k)=tmp1; % 将重构序列存入待输出矩阵 yt 的相应列,此时 y=[L|H]
end
for j=1:row % 将输出矩阵 y 的每一行,分开成左右两半
ca2=yt(j,1:col/2); % 分开的两部分分别作为平均系数序列ca2、细节系数序列cd2
cd2=yt(j,col/2+1:col);
tmp2=myidwt(ca2,cd2,lpr,hpr); % 重构序列
yt(j,:)=tmp2; % 将重构序列存入待输出矩阵 yt 的相应行,得到最终的输出矩阵 y=yt
end
y=yt;