前言:最近接触到一些神经网络的东西,看到很多人使用PSO(粒子群优化算法)优化BP神经网络中的权值和偏置,经过一段时间的研究,写了一些代码,能够跑通,嫌弃速度慢的可以改一下训练次数或者适应度函数。
在我的理解里,PSO优化BP的初始权值w和偏置b,有点像数据迁徙,等于用粒子去尝试作为网络的参数,然后训练网络的阈值,所以总是会看到PSO优化了权值和阈值的说法,(一开始我是没有想通为什么能够优化阈值的),下面是我的代码实现过程,关于BP和PSO的原理就不一一赘述了,网上有很多大佬解释的很详细了……
首先是利用BP作为适应度函数
function [error] = BP_fit(gbest,input_num,hidden_num,output_num,net,inputn,outputn) %BP_fit 此函数为PSO的适应度函数 % gbest:最优粒子 % input_num:输入节点数目; % output_num:输出层节点数目; % hidden_num:隐含层节点数目; % net:网络; % inputn:网络训练输入数据; % outputn:网络训练输出数据; % error : 网络输出误差,即PSO适应度函数值 w1 = gbest(1:input_num * hidden_num); B1 = gbest(input_num * hidden_num + 1:input_num * hidden_num + hidden_num); w2 = gbest(input_num * hidden_num + hidden_num + 1:input_num * hidden_num... + hidden_num + hidden_num * output_num); B2 = gbest(input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:... input_num * hidden_num + hidden_num + hidden_num * output_num + output_num); net.iw{1,1} = reshape(w1,hidden_num,input_num); net.lw{2,1} = reshape(w2,output_num,hidden_num); net.b{1} = reshape(B1,hidden_num,1); net.b{2} = B2\'; %建立BP网络 net.trainParam.epochs = 200; net.trainParam.lr = 0.05; net.trainParam.goal = 0.000001; net.trainParam.show = 100; net.trainParam.showWindow = 0; net = train(net,inputn,outputn); ty = sim(net,inputn); error = sum(sum(abs((ty - outputn)))); end
然后是PSO部分:
%%基于多域PSO_RBF的6R机械臂逆运动学求解的研究 clear; close; clc; %定义BP参数: % input_num:输入层节点数; % output_num:输出层节点数; % hidden_num:隐含层节点数; % inputn:网络输入; % outputn:网络输出; %定义PSO参数: % max_iters:算法最大迭代次数 % w:粒子更新权值 % c1,c2:为粒子群更新学习率 % m:粒子长度,为BP中初始W、b的长度总和 % n:粒子群规模 % gbest:到达最优位置的粒子 format long input_num = 3; output_num = 3; hidden_num = 25; max_iters =10; m = 500; %种群规模 n = input_num * hidden_num + hidden_num + hidden_num * output_num + output_num; %个体长度 w = 0.1; c1 = 2; c2 = 2; %加载网络输入(空间任意点)和输出(对应关节角的值) load(\'pfile_i2.mat\') load(\'pfile_o2.mat\') % inputs_1 = angle_2\'; inputs_1 = inputs_2\'; outputs_1 = outputs_2\'; train_x = inputs_1(:,1:490); % train_y = outputs_1(4:5,1:490); train_y = outputs_1(1:3,1:490); test_x = inputs_1(:,491:500); test_y = outputs_1(1:3,491:500); % test_y = outputs_1(4:5,491:500); [inputn,inputps] = mapminmax(train_x); [outputn,outputps] = mapminmax(train_y); net = newff(inputn,outputn,25); %设置粒子的最小位置与最大位置 % w1阈值设定 for i = 1:input_num * hidden_num MinX(i) = -0.01*ones(1); MaxX(i) = 3.8*ones(1); end % B1阈值设定 for i = input_num * hidden_num + 1:input_num * hidden_num + hidden_num MinX(i) = 1*ones(1); MaxX(i) = 8*ones(1); end % w2阈值设定 for i = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num MinX(i) = -0.01*ones(1); MaxX(i) = 3.8*ones(1); end % B2阈值设定 for i = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num MinX(i) = 1*ones(1); MaxX(i) = 8*ones(1); end %%初始化位置参数 %产生初始粒子位置 pop = rands(m,n); %初始化速度和适应度函数值 V = 0.15 * rands(m,n); BsJ = 0; %对初始粒子进行限制处理,将粒子筛选到自定义范围内 for i = 1:m for j = 1:input_num * hidden_num if pop(i,j) < MinX(j) pop(i,j) = MinX(j); end if pop(i,j) > MaxX(j) pop(i,j) = MaxX(j); end end for j = input_num * hidden_num + 1:input_num * hidden_num + hidden_num if pop(i,j) < MinX(j) pop(i,j) = MinX(j); end if pop(i,j) > MaxX(j) pop(i,j) = MaxX(j); end end for j = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num if pop(i,j) < MinX(j) pop(i,j) = MinX(j); end if pop(i,j) > MaxX(j) pop(i,j) = MaxX(j); end end for j = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num if pop(i,j) < MinX(j) pop(i,j) = MinX(j); end if pop(i,j) > MaxX(j) pop(i,j) = MaxX(j); end end end %评估初始粒子 for s = 1:m indivi = pop(s,:); fitness = BP_fit(indivi,input_num,hidden_num,output_num,net,inputn,outputn); BsJ = fitness; %调用适应度函数,更新每个粒子当前位置 Error(s,:) = BsJ; %储存每个粒子的位置,即BP的最终误差 end [OderEr,IndexEr] = sort(Error);%将Error数组按升序排列 Errorleast = OderEr(1); %记录全局最小值 for i = 1:m %记录到达当前全局最优位置的粒子 if Error(i) == Errorleast gbest = pop(i,:); break; end end ibest = pop; %当前粒子群中最优的个体,因为是初始粒子,所以最优个体还是个体本身 for kg = 1:max_iters %迭代次数 for s = 1:m %个体有52%的可能性变异 for j = 1:n %粒子长度 for i = 1:m %种群规模,变异是针对某个粒子的某一个值的变异 if rand(1)<0.04 pop(i,j) = rands(1); end end end %r1,r2为粒子群算法参数 r1 = rand(1); r2 = rand(1); %个体位置和速度更新 V(s,:) = w * V(s,:) + c1 * r1 * (ibest(s,:)-pop(s,:)) + c2 * r2 * (gbest(1,:)-pop(s,:)); pop(s,:) = pop(s,:) + 0.3 * V(s,:); %对更新的位置进行判断,超过设定的范围就处理下。粒子中不同的值对应不同的范围 for j = 1:input_num * hidden_num if pop(s,j) < MinX(j) pop(s,j) = MinX(j); end if pop(s,j) > MaxX(j) pop(s,j) = MaxX(j); end end for j = input_num * hidden_num + 1:input_num * hidden_num + hidden_num if pop(s,j) < MinX(j) pop(s,j) = MinX(j); end if pop(s,j) > MaxX(j) pop(s,j) = MaxX(j); end end for j = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num if pop(s,j) < MinX(j) pop(s,j) = MinX(j); end if pop(s,j) > MaxX(j) pop(s,j) = MaxX(j); end end for j = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num if pop(i,j) < MinX(j) pop(i,j) = MinX(j); end if pop(i,j) > MaxX(j) pop(i,j) = MaxX(j); end end %更新后的每个个体适应度值 BsJ = BP_fit(indivi,input_num,hidden_num,output_num,net,inputn,outputn); error(s,:) = BsJ; %根据适应度值对个体最优和群体最优进行更新 if error(s)<Error(s) ibest(s,:) = pop(s,:); Error(s,:) = error(s); end %更新全局最优粒子以及最小误差 if error(s)<Errorleast gbest(s,:) = pop(s,:); Errorleast = error(s); end end Best(kg,:) = Errorleast; end %plot(Best); save pfile_gbest gbest;
最后是利用训练好的最优粒子去训练网络:
clear clc close; load pfile_gbest; input_num = 3; output_num = 3; hidden_num = 25; w1 = gbest(1:input_num * hidden_num); B1 = gbest(input_num * hidden_num + 1:input_num * hidden_num + hidden_num); w2 = gbest(input_num * hidden_num + hidden_num + 1:input_num * hidden_num... + hidden_num + hidden_num * output_num); B2 = gbest(input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:... input_num * hidden_num + hidden_num + hidden_num * output_num + output_num); net.iw{1,1} = reshape(w1,hidden_num,input_num); net.lw{2,1} = reshape(w2,output_num,hidden_num); net.b{1} = reshape(B1,hidden_num,1); net.b{2} = B2\'; load(\'pfile_i2.mat\') % load(\'pfile_a2.mat\') load(\'pfile_o2.mat\') % inputs_1 = angle_2\'; inputs_1 = inputs_2\'; outputs_1 = outputs_2\'; train_x = inputs_1(:,1:490); % train_y = outputs_1(4:5,1:490); train_y = outputs_1(1:3,1:490); test_x = inputs_1(:,491:500); test_y = outputs_1(1:3,491:500); % test_y = outputs_1(4:5,491:500); [inputn,inputps] = mapminmax(train_x); [outputn,outputps] = mapminmax(train_y); %建立BP网络 net.trainParam.epochs = 200; net.trainParam.lr = 0.05; net.trainParam.goal = 0.000001; net = newff(inputn,outputn,25); [net,per2] = train(net,inputn,outputn); inputn_test = mapminmax(\'apply\',test_x,inputps); ty = sim(net,inputn_test); net_J = mapminmax(\'reverse\',ty,outputps); error = abs(test_y - net_J);
水平有限,希望能给大家参考一下..........