如何系统地自学金融工程,有哪些优质的书籍推荐?都有哪些学习方法心得?

时间:2024-02-22 11:45:13
作者:亲爱的龙哥
链接:https://www.zhihu.com/question/23507826/answer/34259128
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

传统意义上的金融工程,一般来说是以随机积分为基础的,并且多为衍生品定价,就先说这部分好了。

John C Hull 的书《Options, Futures and Other Derivatives》买一本备着就好了,也不一定需要看,如

所说,这书虽然是圣经,但是只适合那些根本不知道什么是衍生品的人才有帮助。否则,从金融数学知识角度讲,意义不大。工作之后,你可能又会拾起了这本书,蓦然发现,这本书还挺实务的,产品细节,使用原因都讲的大而全。类似的书还有一本 McDonald 写的《Derivatives Markets》。 强烈建议参加北美精算师SOA的MFE考试,考试参考书就是这两本,你只需要有一点微积分和概率论的基础,就可以进行奇异期权的定价了,最重要的是因为这是考试,你会被训练的很熟练,毕竟有ASM的manual可以刷题。有了这个基础,你就可以继续修炼内功了。

 

下一步就是Shreve的经典之作《金融随机分析2》了。该书就是从数学理论角度来讲期权定价中最常见的工具——随机分析。不会随机分析你怎么可能创造新的模型来定价呢。书写的非常好,变成课件都没有什么可浓缩的地方,而且叙述文字都是有用的,教你如何从金融的角度来理解数学公式。这套书建议买中文翻译版,感觉排版和印刷质量比影印版的舒服,而且翻译的也很准确。对于解释性的文字,也是中文好理解吧。

这里不得不提一下《Paul wilmott on Quantitative Finance》,因为作者也是CQF课程的创始人,这本书作为自学教材是极好的覆盖面特别全,衍生品定价,风险管理,数值算法什么的都有。看完这本书也就是一个系统学习的过程了。这本书也比较实用,对比John Hull的书,这才是一本quantitative书的样子,对比shreve,这本书没那么多数学理论。不过既然是全书,这套书比较厚,也可以选择看简版《Paul Wilmott introduces quantitative finance》,这本书有中文翻译版。
类似的书还有Salih Neftci的书。这类书阅读时也可以没有随机分析的基础,但是还是避不开的(至少避不开Ito公式吧)。

以上就是自学金融工程的主干线了,以下的路要自己根据情况选择。
1 补充先修课程。
Shreve的书理论上是需要高等概率论(从测度论视角下出发的概率论,不是抽红球白球的概率论)的知识的,至少前两章就是高等概率论的review,概率论的书没有谁经典到非它不可,可以自己选择,比如Alan Karr的书,chung的书,Resnick的书。有测度论基础学概率论会比较好,没有测度论基础也起码补充分析学的基础。
随机过程其实也蛮重要的,但是貌似也可以看做概率论的分支了,看看自己还有没有精力吧。
如果一开始连john hull的书都看得一知半解的,说明需要补充一点利息 理论的知识,一两个小时就能学完,明白单利复利 利息力现金流贴现等,然后进一步明白远期 期货 债券等产品的数学模型,久期 凸度 免疫 利率期限模型等。

2 深入
我是菜逼,这部分可以不用信我。而且看自己情况有没有必要学以下内容,性价比肯定是不高的。 网上流传的金融数学书单推荐的大多数书都是这一类的,不是PHD,或者PHD不是金融数学方向真心没必要读那些书,quant又不全是随机分析。

金融方向 Asset pricing
不能只从数学角度来理解,也需要从金融交流来讲为什么要这么定价。
推荐书籍《Asset pricing》by cochrane, 《Dynamic Asset Pricing Theory》 by Duffie (前者在couresera有在线课程。) 后面这本书更理论更难,据说写的语言也比较一般,比较难看懂。

数学方向 Stochastic Calculus and martingale
Shreve的经典仅仅是作为硕士生的教科书,而且局限在金融,虽然写的非常好,但是在这个领域毕竟是入门书籍。
他的另外一本书《Brownian motion and stochastic calculus》是更深入的一本书。
还有

推荐的protter的Stochastic Integration and Differential Equations (豆瓣)Stochastic Differential Equations (豆瓣) 不过后者不算深入,很简单,而且只有一章是讲SDE的。

 

金融数学模型
只能想到Interest Rate Models
Mathematical Methods For Foreign Exchange: A Financial Engineers Approach
一个用在固定收益市场,一个用在外汇市场。貌似还有一些credit risk的书。


3 其他
如果真的打算走上这条不归路了,去工作了,还有以下内容需要考虑。
a 英语 特别特别特别重要,让中国人不处于劣势,让你在中国人脱颖而出的必须。当然如果你说是在国内找工作那就另说。

b 编程 这是必须,首推C++。C++该看什么书就不说了,入门来一本,个人喜欢《C++ Primer》。C++进阶网上也有一堆书推荐。在金融工程中的应用推荐mark joshi的《Design Patterns and Derivatives Pricing》
还有Duffy写了若干本C++在金融工程的应用的书。在这个语言百花齐放的时代,C++还是quant里面的行业标准语言。对于JAVA C#等,后者更偏重于开发,银行IT用的可能会比较多。对于R MATLAB Python等,这些也是必须的,但是如果你会C++了这些语言的掌握应该不成问题。其实如果是做学术或者工作中仅仅是做研究和处理数据,仅仅会MATLAB这类语言就好, C++可以不学。但是如果要当desk quant或者做高频交易,C++应该是必须。

c 统计
私以为,现在做金融的还真离不开统计。
基本的数理统计:《数理统计学导论》 Hogg 第7版国内有卖的,不熟悉常用的分布和假设检验等,统计等于不会。
线性回归分析,计量经济学,时间序列分析。
回归分析推荐 《linear regression analysis》
计量经济学我觉得都差不多,内容其实就是回归分析+时间序列分析,自己找个薄的吧。
不过还有一类书是金融计量经济学,比如比较经典的《the econometrics in financial markets》 还有tsay的《analysis of financial time series》 黎子良的《statistical models and methods for financial markets》,这些书的特点是其实没有在讲回归分析或者时间序列分析,倒是把金融市场的数据处理和实证检验讲了一遍,连尼玛option pricing都讲,还蛮实用的。缺点是感觉什么都没讲明白没讲透。
时间序列比较经典的是hamilton的书和brockwell的书,不过有证明,而且不是专门面向金融的。
理论和应用比较平衡的是的《Time Series Analysis and Its Applications with Rexamples》其实只要能讲ARMA GARCH以及GARCH的若干衍生模型,就算掌握入门的金融时间序列分析了,如果想深入GARCH还有《GARCH models》这本书,不过这书跳步跳的太厉害,别作为入门读物就行。网上不少的course notes挺好的,比如cochrane的Time series for macroeconomics and finance.

d 最优化
推荐《Convex Optimization》 youtube和stanford有在线课程视频,还有配套的MATLAB插件和SLIDES.

e 机器学习
作为金融工程认识我个人更偏好统计学习,因为这更偏重于模型选择和评价,也能跟c呼应上。推荐《the elements of statistical learning》 不过貌似不是牛逼哄哄的PHD,也不会有人期待你用机器学习方法。

e 量化投资
这部分最赚钱,也是金融工程转变的方向,但是这不是书本上死学能学出来的, 的博客里有量化投资的书单推荐,我觉得很赞。

过去一天突然出现很多赞,为此简单补充一句。原始答案里面的东西大多属于Q Quant的内容,偏向于金融随机分析和衍生品定价。现在的就业市场有很大变化,对于我提到的很多内容其实市场需求都有所下降,而业界中真正还在做衍生品定价研究的人其实非常少。为此我建议大家不要轻易入坑,现在比较流行的是P Quant的机器学习,多因子模型那一套。如果立志要做Q Quant方面的内容,那么我在此补充两本书,我认为至少要把以下两本书(它们本来就是一个系列)啃下来才算有竞争力。如果翻看之后觉得头疼,那么慎重入坑,P Quant的东西出活会快得多,学习曲线没有那么陡峭。

我补充的两本书如下:

  1. Brownian Motion and Stochastic Calculus (豆瓣)
  2. Methods of Mathematical Finance (豆瓣)

第一本书虽然只涉及Brownian Motion而没有Jump但是书的主题其实比较高级的鞅论(Martingale Theory)。第二本书涉及的是Diffusive General Equilibrium Asset Pricing(扩散性一般均衡下的资产定价)的内容,重点介绍了CCAPM(消费性资产定价理论)下的资产管理理论和它的拓展,属于Q下的投资组合理论,但由于实际操作难度较大,我并没有听说有任何机构在实际使用。该理论到实际应用还需要时间,不过实际工作的Q Quant的工作强度和内容与两本书中的内容很像所以特此提出来供大家参考。
--------------------------------------------------------------------------------------------------------------
谢邀。

 

师傅领进门,修行在个人。这个用在金工学子头上非常准确。要想在金工行业出类拔萃,就必须要具备极强的自学能力。所谓系统是对初学者而言,进门之后,每个人有自己的特长或者说是偏好,就需要重点加强,然后不要有哪块特别无知就好了。毕竟金工行业涉及非常广泛,一个做Fixed Income的跟做Equity的用的套路会有很大区别,即使实在Fixed Income自己的领域里面,也会有很多Industry Standard,对于不同的合同,就得假设XX结构。

我在下面列出一些书和简短评价,都是各方向很重要的书,怎么着你也得看过这几本书的封面才行。

General Finance Knowledge
Options, Futures and Other Derivatives (豆瓣)
John Hull的这本书被好多华尔街的人称作圣经,在我看来多少有点言过其实。这本书讲的内容浅显得很,而且废话连篇,一页纸能说明白的东西,偏偏要花20页来讲,读下来锻炼的最多的是英语阅读能力。虽然如此说,但是这本书包含的内容之广却是其他各方向专门的书所不能及的,所以你起码要将此书浏览过一遍,不然有些基本的东西别人抛出来你都不知道那就笑大街了。我没读过中文版,我觉得如果只是浏览的话,看中文书还是会快很多,知道所有名词的英文就好了,不过听朋友说中文呢翻译不是很好。

Stochastic Calculus
Stochastic Calculus for Finance I (豆瓣)
Stochastic Calculus for Finance II (豆瓣)
Shrev的这两本经典上下册,金工绕不过去的坎。如果你读起来觉得非常吃力,那说明你功力不够。如果你能读懂就算入门了,如果你读起来开始觉得内容太浅显甚至有点废话,说明你已经被更高级的书虐过了。如果你去面试自称quant,随时准备有人抽出第二册里的章后习题来测试你,所以最好要把习题做过好几遍,烂熟于胸。
Stochastic Differential Equations (豆瓣)
Øksendal 的这本书是你接着应该读的书,光是看别人论文里面有多少次引用这本书你就知道他的重要性了,这本书涉及了很多Diffusion process的进阶应用,你至少要了解其中的概念。
Stochastic Integration and Differential Equations (豆瓣)
再往后面走,就不玩Diffusion Process了,就该开始玩半鞅,停时和Levy Process了,Philip E. Protter的这本书是我见过的最好的。由于到了有Jump的时候,问题会变的复杂很多,Philip Protter的体系是相对来说比较好的。

Fixed Income
Interest Rate Models
这本一千多页的大部头拿在手里都觉得沉,读下来更是郁闷,不过就是全,而且讲得很详尽,基本上每个搞Fixed Income的手上都有一本。
Term-Structure Models (豆瓣)
瑞士学术界新贵写的书,内容跟上一本差不多,但是薄很多,也就意味着要难入手一点,但是这本书的体系非常连贯,学下来大有打通一个学科的快感。

Computational Finance
Computational Methods in Finance (豆瓣)
哥大IEOR教授Ali Hirsa的新作,涉及了Finite Difference,FFT,Calibration等内容,讲得很简单,适合入门。
Monte Carlo Methods in Financial Engineering (Stochastic Modelling and Applied Probability) (豆瓣)
这本书才可以称作圣经,Monte Carlo模拟的圣经,一个单独的方法,却可以写出一部这么厚的书来讨论,里面的内容非常详尽,尤其是Variance Reduction那几章是重中之重。

Financial Econometrics
Analysis of Financial Time Series (Wiley Series in Probability and Statistics) (豆瓣)

这本书说实在我个人不是很喜欢,不过毕竟是很多人都绕不开的一本书,所以里面的内容需要熟悉。
An Introduction to Bayesian Inference in Econometrics (豆瓣)
你无法想象1971年的时候有一个人能够把Bayesian Analysis做的这么深入,建构了一个庞大的系统,如果要搞Bayesian,那这本书你肯定绕不开的。

 

Real Option
Investment under Uncertainty (豆瓣)
这本书在94年出版的时候扉页赫然写着“To the Future”,今天看来两位作者确实没有夸张,这本书奠定了实物期权的理论基础,有太多paper都是从这本书开始的了。

 

这些书,不用真的全部都看过,不过封面和标题还是要记住的。
时间有限,先列这些,有问题大家留言。

 

最后说一句,真正搞金工的都是读paper,paper上的东西才比较前沿。路漫漫兮,与君共勉。

 

更多内容请浏览我的专栏 -- Terrier Finance


作者:匿名用户
链接:https://www.zhihu.com/question/23507826/answer/45276913
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

第一部分 重要书籍

许多大家经常下载的书籍,应该都能在这些帖子里找到。另外关于FE的相关数学基础及数学书籍请参考“经济金融数学专区”子版块。

1. John Hull《Options,Futures,and Other Derivatives》8th Edition
说明:最主流的FE教材,最新的英文版

Solution Manual:

2. Steven Shreve 《Stochastic calculus for finance I & II 》说明:非常好的金融随机分析教材,有很多有价值的课后习题
金融随机分析(STOCHASTIC CALCULUS FOR FINANCE) 及其答案

3.Marek Capinski& Tomasz ZastawniakMathematics for Finance: An Introduction to Financial Engineering
说明:比较好的,金融工程入门教材

4.Paolo Brandimarte 《Numerical Methods in Finance and Economics: A MATLAB-Based Introduction (2nd edition)》
说明: 金融数值方法入门教材,基于matlab的教科书,第一版没有Economics,是同一本书。

5.Paul Glasserman 《Monte Carlo methods in financial engineering
说明:专门讲金融里蒙特卡洛方法的好书,对于方差减小技术以及一些专题做了很详细的说明。

6.Justin London 《Modeling derivatives in C++》
说明:很全的一本关于衍生品定价C++算法的书。

7. 600 多篇quant paper(全部免费)

8. 金融工程书籍合集
说明:非常全的FE书籍合集,数目参见附件的书单

9. Stanford FM 相关课程资源
说明:汇总了Stanford的Master of Financial Mathematics的相关课程课本和讲义

10. 信贷风险建模 Introduction to credit risk modeling 2010年第二版
说明:扫描的最新版

11. 金融工程建模书籍汇总
说明:老帖,汇总了一些建模相关的书

12. 概率与随机过程经典教材及参考书
说明:Oxford出版社关于概率随机的参考书

13. 国内已影印出版的随机分析、金融数学书籍总结
说明:有影音版的FE书籍,大家可以参考,毕竟许多FE的书并不是很容易,有纸质的书在学习的过程中效果会好很多

14. 英文数学书籍合集
说明:很全的各种数学书合集

15. 金融衍生品和数量金融必备的参考书
说明:帖子稍微有点儿老,但还是值得看一下

第二部份 学习资源

这部分主要汇总大家提供的各个学校的相关课程的课件

1.犹他大学empirical methods in finance课件

2. 悉尼大学教材金融建模ppt

3. McMaster 大学金融数学 credit risk课程 内部教材

4. 算法交易策略导引课件--新加坡理工大学材料

5. 金融工程19个PPT 上海交大

6. 南洋理工随机微分,随机过程课件

7. 上财数量金融课件

8. 中南财大金融 金融衍生产品定价的数值方法

9. 明尼苏达金融数学部分课件资料

10. 沃顿商学院excel金融基础建模

11. 同济大学姜礼尚《金融衍生物定价理论》教学课件

第三部份 其他资源

1. Quant Job Interview
说明: 一本流行FE工作面试书籍

2. 花旗金融工程职业指南

3. 五本矿工面试参考书(新增Heard on the Street,包括绿宝,红宝)

作者:小亮
链接:https://www.zhihu.com/question/23507826/answer/51747056
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

FRM Handbook, 不深入的话这是一本神书..


Optimization (Linear Programming, Quadratic Programming, Stochastic Programming etc.):
Optimization Methods in Finance
Stochastic Calculus: Stochastic Calculus for Finance II Shreve
General Knowledge: (Martingale什么的缺了点)
Investment Science
--------------------------------------------------------------------------------------------
Quantnet有个挺好的书单:
Master reading list for Quants, MFE (Financial Engineering) students

FREE QUANT CAREER GUIDES
  • What do quant do ? A guide by Mark Joshi. Download
  • Paul & Dominic\'s Guide to Quant Careers (see attachment)
  • Career in Financial Markets 2011- a guide by efinancialcareers. Download
  • Interview Preparation Guide by Michael Page: Quantitative Analysis. Download
  • Interview Preparation Guide by Michael Page: Quantitative Structuring. Download
  • Paul & Dominic\'s Job Hunting in Interesting Times Second Edition (see attachment)
  • Peter Carr\'s A Practitioner\'s Guide to Mathematical Finance (see attachment)
  • Max Dama\'s Guide to Automated Trading (see attachment)
CAREER AS A QUANT
BOOKS FOR QUANT INTERVIEWS
GOOD BOOKS TO READ BEFORE STARTING MFE PROGRAM
GENERAL READING ON WALL STREET
PROGRAMMING
C++ (ordered by level of difficulty)
C# (ordered by level of difficulty)
F# (ordered by level of difficulty)
Matlab (ordered by level of difficulty)
Excel
VBA
Python
FINITE DIFFERENCES
MONTE CARLO
STOCHASTIC CALCULUS
VOLATILITY
INTEREST RATE
FX
STRUCTURED FINANCE
STRUCTURED CREDIT
RISK MANAGEMENT/VAR
SAS/S/S-PLUS
HANDS ON
NOT ENOUGH YET?