7种图数据库简单比较

时间:2024-02-20 11:20:10

 

1 图数据库排名

图数据库排名:https://db-engines.com/en/ranking/graph+dbms

2 图数据库比较表格

初次release 2007 2010 2012 2017 2018 2016 2017
是否开源 社区版开源 开源版限制数据库规模 开源 开源 开源 开源 闭源
是否收费 企业版收费 webUI管理模块收费 企业版收费 免费 免费 免费 收费
数据模型 graph doc/graph/kv doc/graph/kv graph graph graph graph
实施语言 Java/Scala Java C/C++/JavaScript Java Java Go C++
SQL 不支持 类SQL 不支持 不支持 不支持 不支持 类SQL
查询语言 cypher 类SQL AQL gremlin gremlin GraphQL GSQL
是否支持在线备份 社区版不支持 主主备份 主从备份 后端框架支持 后端框架支持 支持 GBAR支持
存储系统 原生 原生 RockDB
Cassanda
Hbase
Cassanda
Hbase
原生 原生
分布式 企业版支持 后期支持 后期支持 原生支持 原生支持 原生支持 支持
应用场景 人工智能、欺诈检测、知识图谱等场景 知识图谱等 知识图谱等 云服务商、具备技术能力深厚的厂商 互联网大规模数据场景,网络安全、金融风控、广告推荐、知识图谱等 行业图谱,社交网络等
实时欺诈检测等
 
相关文档
非常多
 
 
文档地址 https://neo4j.com/docs/ http://orientdb.com/docs/last/ https://www.arangodb.com/documentation/ http://www.janusgraph.cn/ https://hugegraph.github.io/hugegraph-doc/ https://dgraph.io/docs/ http://docs.tigergraph.com.cn/

3 各种图数据库属性

3.1 Neo4j(主流)

  • 历史悠久且长期处于图数据库领域的主力地位,其功能强大,性能也不错,单节点的服务器可承载上亿级的节点和关系。社区版最多支持 320 亿个节点、320 亿个关系和 640 亿个属性。
  • 优点:Neo4j有自己的后端存储,不必如同JanusGraph等一样还要依赖另外的数据库存储。 Neo4j在每个节点中存储了每个边的指针,因而遍历时效率相当高。
  • 缺点:企业版付费。开源的社区版本只支持单机,不支持分布式。社区版只能部署成单实例,企业版可以部署成高可用集群,从而可以解决高并发量的问题;不能做集群,单个实例故障时影响系统正常运行。社区版只支持冷备份,即需要停止服务后才能进行备份。

3.2 OrientDB(不推荐)

  • OrientDB是第二代分布式图数据库,以混合数据模型为特点,它包括可以在最复杂的场景中使用复制和分片,并以Apache2许可证提供开放源代码。ORIENTDB工作速度快,能够在最常见的硬件上每秒存储220000条记录,并且支持无模式、完整和混合模式,可以使用SQL作为查询语言之一。
  • 优点:ORIENTDB使用身份验证、密码和静态数据加密等方式为所有机密数据提供安全保护。OrientDB为确保更好的性能,最近引入了节点的快速重新同步,即使处理数十亿条记录,遍历速度也不会受到影响。OrientDB 是分布式多模型数据库,支持图数据模型,支持 sharding 机制,大规模查询情况下性能比较好;
  • 缺点:开源版功能部分欠缺。起步较早,最初的时候都是一个单机的图数据库,然后随着用户数据量的不断增加,后期增加了分布式模式,支持集群和副本,但是由于后加的功能,其分布式支持的不是很好。

3.3 ArangoDB(不推荐)

  • Arangodb以一种非常创造性和灵活的方式安排数据。数据可以存储为键或值对、图或文档,所有这些都可以通过一种查询语言访问。为了更安全的选择,查询中可以使用声明性模型。用户可以在一个查询中组合不同的模型及其特性的原因是,ArangoDB对所有数据模型都使用相同的核心和相同的查询语言。
  • 优点:Arangodb独特的特性是它能够在一个查询中组合不同的数据模型。这使得其展示方式令人印象深刻且美观。它比其他数据库具有更灵活的扩展性、增强的容错性、大容量的存储能力和更低的成本。arangodb最突出的特性是foxx,这是一个用于编写数据库中以数据为中心的javascript框架。

  • 缺点:它们起步比较早,最初的时候都是一个单机的图数据库,然后随着用户数据量的不断增加,后期增加了分布式模式,支持集群和副本,但是经过调研发现,可能是由于后加的功能,他们的分布式支持的不是很好。

3.4 JanusGraph(推荐)

  • JanusGraph是可扩展的图数据库,底层依赖于大数据组件,对分布式支持的非常好,也都是完全的开源免费,存储数据模型也都是专为图数据而设计。JanusGraph基于Titan发展而来,包含其所有功能,采用Tikerpop的Gremlin图查询语言,有单独的后端存储,支持Cassandra/HBase/BerkeleyDB等做存储,支持Solr/ES/Lucence等做图索引 支持Spark GraphX/Giraph等图分析计算引擎及Hadoop分布式计算框架 原生支持集成了Tinkerpop系列组件:Gremlin查询语言,Gremlin-Server及Gremlin applications。 采用很友好的Apache2.0协议,支持对接可视化组件如CytoscapeGephi plugin for Apache TinkerPop,GraphexpKeyLines by Cambridge IntelligenceLinkurious
  • 优点:JanusGraph的存储系统依赖于像Cassandra、HBase(HBase又依赖于Zookeeper和HDFS)、BerkelyDB等等这样的存储系统,索引系统依赖于Elasticsearch、Solr、Lucene等等;也基于这些原因,它和大数据生态结合的非常好,可以很好地和Spark结合做一些大型的图计算。所以可以很好的和spark的大数据平台进行结合,并且能够支持实时图遍历和分析查询
  • 缺点:其存储需要依赖于其他存储系统,JanusGraph使用HBase作为底层存储系统,而HBase又依赖于Zookeeper和HDFS,另外JanusGraph的索引又依赖于ES,所以想要搭建一套完整的JanusGraph,需要同时搭建维护好几套系统,维护成本非常大。另一问题就是稳定性,根据经验来看,系统越复杂,依赖系统越多,整体可控性就越差,稳定性风险就越大。并且三方的一些工具也存在一些问题,所以要用肯定要基于底层(读写)进行性能优化。

3.5 HugeGraph(推荐)

  • 百度基于JanusGraph开源了HugeGraph,增加了很多特性,提高了易用性及性能,增加了一些图分析算法。实现了Apache ThinkerPop 3框架,支持Gremlin图查询语言。HugeGraph支持多用户并行操作,输入Gremlin查询语句,并及时得到图查询结果。也可以再用户程序中调用hugeGraph API进行图分析或查询。
  • 优点:HugeGraph可以与Spark GraphX进行链接,借助Spark GraphX图分析算法(如PageRank、Connected Components、Triangle Count等)对HugeGraph的数据进行分析挖掘。HugeGraph还针对图数据库的高频应用(例如:ShortestPath、k-out、k-neighbor等)做了特定性能优化,并且为用户提供更为高效的使用体验
  • 缺点:基于JanusGraph开源,存在和JanusGraph同样的问题,维护成本高。

3.6 Dgraph(推荐)

  • dgraph 是基于 golang 开发的开源的分布式图数据库。诞生时间不长, 发展却很迅速,从设计之初就考虑了分布式和扩展性,所以对分布式支持的非常好。
  • 优点:Dgraph 不依赖与任何第三方系统,只有一个 Dgraph 可执行文件,只需在启动时通过参数指定是 Zero(管理节点)还是 Alpha(数据节点)即可,Dgraph 会自动组成集群,运维部署非常简单。Dgraph维护成本低很多。Dgraph 和 JanusGraph 性能差不多,但复杂查询下,Dgraph 性能远高于 JanusGraph。同时,Dgraph 的写入性能也整体高于 janusGraph。
  • 缺点:比如还不支持多重边、一个集群只支持一个图、与大数据生态兼容不足等,这些都需要靠后期不断完善。

3.7 TigerGraph(不推荐)

  • TigerGraph是一个目前业界先进的企业级图数据库。系统完全闭源。部分查询算法开源。分为开发版和企业版。开发版免费,但功能受限,比如单点只能构建一个图。企业面收费,支持大规模集群,顶点表数量不受限制。
  • 优点:TigerGraph可以通过GSQL实现类存储过程的算法封装,而且已经实现了很多图算法,但是语法结构要比Neo4j复杂的多。
  • 缺点:付费图数据库。Neo4j按照cpu收费,TigerGraph按照数据容量(G)来收费,费用较贵。

4 选型结论

  • 推荐一:Neo4j。使用起来相当的方便,入门门槛很低,基本上拿来就能用,并且有很好的社区支持,三方库、第三方工具的支持,社区版本也可以支撑到不错的数据量(亿级没问题)。但是如果想挖掘海量数据,需要考虑的是海量数据的存储及计算,分布式存储是首选。开源版Neo4j并不支持分布式。
  • 推荐二:Dgraph。Dgraph 除了运维成本低之外,整体读写性能也优于JanusGraph。缺点是文档社区支持较差。
  • 推荐三:JanusGraph或HugeGraph。JanusGraph社区支持更全,复杂计算性能优于HugeGraph。

参考资料

[1] 贝壳找房—【图数据库系列】之 JanusGraph VS Dgraph:贝壳分布式图数据库技术选型之路  https://www.6aiq.com/article/1586913224622
[2] 百度安全开源大规模图数据库HugeGraph  https://zhuanlan.zhihu.com/p/41240429
[3] “图”叫好不叫座?TigerGraph让人人都能图分析  https://baijiahao.baidu.com/s?id=1675240460582634548&wfr=spider&for=pc
[4] 「JanusGraph与HugeGraph」图形数据库 - 技术选型-功能对比 https://blog.csdn.net/lovebyz/article/details/88800363